首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light.  相似文献   

2.
Fe(II) associated with iron-containing minerals has been shown to be a potential reductant in natural subsurface environments. While it is known that the surface-bound iron species has the capacity to dechlorinate various chlorinated compounds, the role of transition metals to act as catalysts with these iron species is of importance. We previously observed that the reduction of Cu(II) by Fe(II) associated with goethite enhanced the dechlorination efficiency of chlorinated compound. In this study, the reductive dechlorination of carbon tetrachloride (CCl4) by dissolved Fe(II) in the presence of Cu(II) ions was investigated to understand the synergistic effect of Fe(II) and Cu(II) on the dechlorination processes in homogeneous aqueous solutions. The dechlorination efficiency of CCl4 by Fe(II) increased with increasing Cu(II) concentrations over the range of 0.2-0.5 mM and then decreased at high Cu(II) concentrations. The efficiency and rate of CCl4 dechlorination also increased with increasing dissolved Fe(II) concentration in the presence of 0.5 mM Cu(II) at neutral pH. When the Fe(II)/Cu(II) ratio varied between 1 and 10, the pseudo-first-order rate constant (k(obs)) increased 250-fold from 0.007 h(-1) at 0.5 mM Fe(II) to 1.754 h(-1) at 5 mM Fe(II). X-ray powder diffraction and scanning electron microscopy analyses showed that Cu(II) can react with Fe(II) to produce different morphologies of ferric oxides and subsequently accelerate the dechlorination rate of CCl4 at a high Fe(II) concentration. Amorphous ferrihydrite was observed when the stoichiometric Fe(II)/Cu(II) ratio was 1, while green rust, goethite, and magnetite were formed when the molar ratios of Fe(II)/Cu(II) reached 4-6. In addition, the dechlorination of CCl4 by dissolved Fe(II) is pH dependent. CCl4 can be dechlorinated by Fe(II) over a wide range of pH values in the Cu(II)-amended solutions, and the k(obs) increased from 0.0057 h(-1) at pH 4.3 to 0.856 h(-1) at pH 8.5, which was 9-25 times greater than that in the absence of Cu(II) at pH 7-8.5. The high reactivity of dissolved Fe(II) on the dechlorination of CCl4 in the presence of Cu(II) under anoxic conditions may enhance our understanding of the role of Fe(II) and the long-term reactivity of the zerovalent iron system in the dechlorination processes for chlorinated organic contaminants.  相似文献   

3.
The speciation of iron (Fe) strongly influences the deposition and accumulation on gills causing toxicitytoward fish. The impacts of ferric (Fe(III)) and ferrous (Fe(II)) species on gill accumulation were studied in parallel flow-through channel experiments where Atlantic salmon (Salmo salar L.) was kept in cages. Downstream of the pH 6.3 mixing point, where Fe(III) ions or Fe(ll) ions were added continuously to lake water, the molecular mass of Fe(III) increased within 0.5 min after mixing due to hydrolysis and polymerization, while the Fe(II) species remained as low molecular mass (LMM) species 20 min after mixing. For fish exposed to the Fe(lll) enriched water (0.5 mg L(-1)) the Fe accumulation on gills was high and decreased downstream, while low when Fe(II) was added to water. By adjusting the Fe(II) enriched water to pH 6.7, the oxidation of Fe(II) forming Fe(III) accelerated, the Fe accumulation on fish gills increased by a factor of 3, and high mortality (33%) was observed. Thus, input of Fe(ll) ions, oxidation of Fe(ll) at rates higher than 1.5 microg L(-1) min(-1), and continuous formation of LMM Fe(III) species accumulating on gills can induce toxicity toward fish present in circumneutral freshwaters a long distance downstream from the entry points.  相似文献   

4.
The dechlorination of carbon tetrachloride (CT) by Fe(II) associated with goethite in the presence of transition metal ions was investigated. X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) were used to characterize the chemical states and crystal phases of transition metals on solid phases, respectively. CT was dechlorinated to chloroform (CF) by 3 mM Fe(II) in 10 mM goethite (25.6 m2 L(-1)) suspensions. The dechlorination followed pseudo-first-order kinetics, and a rate constant (k(obs)) of 0.036 h(-1) was observed. Transition metal ions have different effects on CT dechlorination. The addition of Ni(II), Co(II), and Zn(II) lowered the k(obs) for CT dechlorination, whereas the amendment of 0.5 mM Cu(II) into the Fe(II)-Fe(III) system significantly enhanced the efficiency and the rate of CT dechlorination. The k(obs) for CT dechlorination with 0.5 mM Cu(II) was 1.175 h(-1), which was 33 times greater than that without Cu(II). Also, the dechlorination of CT by surface-bound iron species is pH-dependent, and the rate constants increased from 0.008 h(-1) at pH 4.0 to 1.175 h(-1) at pH 7.0. When the solution contained Cu(II) and Fe(II) without goethite, a reddish-yellow precipitate was formed, and the concentration of Fe(ll) decreased with the increase in Cu(II) concentration. XPS and XRPD analyses suggested the possible presence of Cu2O and ferrihydrite in the precipitate. Small amounts of aqueous Cu(I) were also detected, reflecting the fact that Cu(II) was reduced to Cu(I) by Fe(II). A linear relationship between k(obs) for CT dechlorination and the concentration of Cu(II) was observed when the amended Cu(II) concentration was lower than 0.5 mM. Moreover, the k(obs) for CT dechlorination was dependent on the Fe(II) concentration in the 0.5 mM Cu(II)-amended goethite system and followed a Langmuir-Hinshelwood relationship. These results clearly indicate that Fe(II) serves as the bulk reductant to reduce both CT and Cu(II). The resulting Cull) can further act as a catalyst to enhance the dechlorination rate of chlorinated hydrocarbons in iron-reducing environments.  相似文献   

5.
The oxygen reduction rate at the cathode is a limiting factor in microbial fuel cell (MFC) performance. In our previous study, we showed the performance of an MFC with ferric iron (Fe3+) reduction at the cathode. Instead of oxygen, ferric iron was reduced to ferrous iron (Fe2+) at the cathode with a bipolar membrane between the anode and cathode compartment. This resulted in a higher cathode potential than is usually obtained with oxygen on metal-based chemical catalysts in MFCs. In this study, we investigated the operation of the same MFC with ferric iron reduction at the cathode and simultaneous biological ferrous iron oxidation of the catholyte. We show that the immobilized microorganism Acidithiobacillus ferrooxidans is capable of oxidizing ferrous iron to ferric iron at a rate high enough to ensure an MFC power output of 1.2 W/m2 and a current of 4.4 A/m2. This power output was 38% higher than in our previous study at a similar current density without ferrous iron oxidation. The bipolar membrane is shown to split water into 65-76% of the needed protons and hydroxides. The other part of the protons was supplied as H2SO4 to the cathode compartment. The remaining charge was transported by K+ and HSO4-/SO4(2-) from the one compartment to the other. This resulted in increased salt concentrations in the cathode. The increased salt concentrations reduced the ohmic losses and enabled the improved MFC power output. Iron could be reversibly removed from the bipolar membrane by exchange with protons.  相似文献   

6.
Superoxide (and potentially its conjugate acid hydroperoxyl) is unique among the reactive oxygen species in that its standard redox potential in circumneutral natural waters potentially allows it to reduce ferric iron to the more soluble ferrous state. Here we have observed the superoxide/ hydroperoxyl-mediated reduction of ferric complexes with a variety of synthetic organic ligands and several complexes with natural organic matter (NOM), as well as freshly precipitated amorphous ferric oxyhydroxide, in bicarbonate buffered solutions at pH 8.1. From measurements of superoxide decay in the presence of the complexes, we calculated second-order rate constants for superoxide/ hydroperoxyl-mediated reduction that vary from (9.3+/-0.2) x 10(3) M(-1) s(-1) for the complex between Fe(III) and desferrioxamine B up to (1.9+/-0.2) x 10(5) M(-1) s(-1) for Fe(III)-salicylate and (2.3+/-0.1) x 10(5) M(-1) s(-1) for one of the Fe(III)-NOM complexes. We also verified that ferrous iron was produced from superoxide/hydroperoxyl-mediated Fe(III) reduction using ferrozine to trap free Fe(II). Low yields of the ferrozine complex when compared to the measured rates of superoxide decay suggest that ferric complexes are reduced directlyto corresponding ferrous complexes, with much of the ferrous complex reoxidizing before it is able to release free ferrous iron. This is an important consideration for microorganisms, as the kinetics of trace metal uptake is typically governed by free ion activity.  相似文献   

7.
The iron-oxidizing bacterium Acidithiobacillus ferrooxidans SUG 2-2 is markedly resistant to mercuric chloride and can volatilize mercury (Hg0) from mercuric ion (Hg2+) under acidic conditions. To develop a microbial technique to volatilize and recover mercury from acidic and organic compound-containing mercury wastewater, which is usually produced in the course of everyday laboratory work in Okayama University, the effects of organic and inorganic chemicals on the mercury volatilization activity of A. ferrooxidans cells were studied. Among 55 chemicals tested, the mercury volatilization from a reaction mixture (pH 2.5) containing resting cells of SUG 2-2 (1 mg of protein) and mercury chloride (14 nmol) was strongly inhibited by AgNO3 (0.05 mM), K2CrO7 (1.0 mM), cysteine (1.0 mM), trichloroethylene (1 microM), and commercially produced detergents (0.05%). However, the strong inhibition by trichloroethylene and detergents was not observed when these organic compounds were chemically decomposed using Fenton's method before the treatment of the wastewater with SUG 2-2 cells. When 20 ml of water acidified with sulfuric acid (pH 2.5) containing ferrous sulfate (3%), diluted mercury wastewater (17.5 nmol of Hg2+) and SUG 2-2 cells (0.05 mg of protein) were incubated for 10 d at 30 degrees C, 47% of the total mercury in the wastewater was volatilized and recovered into a trapping reagent for metal mercury. However, when the organic compounds in the mercury wastewater were decomposed using Fenton's method and then treated with A. ferrooxidans cells, approximately 100% of the total mercury in the wastewater was volatilized and recovered.  相似文献   

8.
ABSTRACT: The antioxidant activity of relatively polar extracts from virgin olive oil was investigated in sunflower oil stripped of tocopherols and in tocopherol-stripped sunflower oil-in-water emulsions. The extracts were found to be effective as antioxidants in both media in the absence of added metal ions. However, the antioxidant activity was markedly reduced by the presence of added ferric chloride. In sunflower oil-in-water emulsions (pH 5.4) containing ferric chloride, all concentrations of olive oil polyphenols exhibited pro-oxidant effects. It appears that the reducing action of olive oil polyphenols accelerates oxidation of oil and especially of emulsions containing Fe (III) by reducing ferric ions to ferrous ions, which are effective pro-oxidants during storage.  相似文献   

9.
The purpose of this study was to evaluate the antioxidant activity of Maillard reaction products (MRPs) in both aqueous and ethanolic glucose-glycine oligomer solutions. The reduction in pH was higher in aqueous MRP solutions than ethanolic MRP solutions. The samples in ethanolic MRP solutions had greater Abs294 nm and Abs420 nm than those in aqueous MRP solutions. The ferrous ion chelating activity of all MRP samples was much higher than the cupric ion chelating ability in both aqueous and ethanolic solutions. The antioxidant activity in ethanolic MRP solutions was higher than that in aqueous MRP solutions. MRPs derived from the diglycine were found to be effective antioxidants in different in vitro assays with regard to the ABTS and DPPH radical scavenging activities, and ferric reducing/antioxidant power.  相似文献   

10.
Various promoters and inhibitors of enzymic lipid peroxidation in catfish were investigated. At 100 ppm BHA, BHT, NDGA, TBHQ, PG, EDTA, STPP, TDPA, THBP, and ethoxyquin completely inhibited lipid peroxidation activity. Natural antioxidants, a-tocopherol, P-carotene, and rosemary powder, had moderate inhibitory effects. Sodium ascorbate and erythorbate at a concentration of 100 ppm activated lipid peroxidation; however, higher concenlrations of these antioxidants had inhibitory effects. Unlike ferric and ferrous ions, Cu++ ions at 0.015 mM did not catalyze lipid peroxidation. Inorganic pyrophosphate and phosphate at 0.1 mM chelated ferric ion and inhibited lipid peroxidation.  相似文献   

11.
A representative polyoxometalate, alpha-12-tungstophosphatic acid (PW12(3-), POM), is loaded on the surface of TiO2 particles used as a cocatalyst to gain further insights into the underlying reaction mechanism and to estimate the feasibility of using the new POM/TiO2 cocatalyst in the photocatalytic degradation of 2,4-dichlorophenol (DCP) in aqueous media. Loading the PW12(3-) species on the surface of TiO2 enhances charge separation in the UV-illuminated TiO2, thereby accelerating the hydroxylation of the initial DCP substrate but not the mineralization of DCP, which is somewhat suppressed in the presence of the polyoxometalate. An increase in the load of POM increases the concentration of aromatic intermediates, and more toxic intermediates, such as 2,6-dichlorodibenzo-p-dioxin, 2,4,6-trichlorophenol, are detected in the PW12(3-)/TiO2 system. By contrast, cleavage of the whole conjugated structure of DCP predominates in TiO2 only dispersions. Strong ESR signals for the superoxide radical anionic species, O2*- (HO2* radicals in acidic media; pH < 5), are detected in TiO2 only dispersions; signals of O2*- are much weaker in the TiO2/ POM composite system under otherwise identical conditions. Experimental results infers that enhancement of charge separation in TiO2 photocatalysis does not always result in improvement of the efficiency of mineralization of organic substrates, and the reaction between organic radical cations and the formed superoxide radical anions may be responsible forthe mineralization of the chlorophenol.  相似文献   

12.
The purpose of this study was to evaluate the antioxidant and antiradical properties of Maillard reaction products (MRP) in both aqueous and ethanolic fructoseglycine oligomer solutions. Antioxidant and radical scavenging activities of MRPs were investigated using different in vitro assays: the ferric ion (Fe3+) reducing ability, cupric ion (Cu2+), ferrous ion (Fe2+) chelating effects, DPPH and ABTS radical scavenging activities, and Fe3+-TPTZ reducing ability. MRPs derived from fructose-diglycine (GG) were found to be effective antioxidants in different in vitro assays. The antioxidant activity was higher in ethanolic solutions than in aqueous MRP solutions.  相似文献   

13.
The reactive oxygen species responsible for the transformation of carbon tetrachloride (tetrachloromethane, CT) by modified Fenton's reagent using hydrogen peroxide (H2O2) concentrations >0.1 M was investigated. Addition of the hydroxyl radical scavenger 2-propanol to modified Fenton's reactions did not significantly lower CT transformation rates. Scavenging by 2-propanol not only confirmed that hydroxyl radicals are not responsible for CT destruction, but also suggested that a major product of an iron (III)-driven initiation reaction, superoxide radical anion (O2-), is the species responsible for CT transformation. To investigate this hypothesis, CT degradation was studied in aqueous KO2 reactions. Minimal CT degradation was found in CT-KO2 reactions; however, when H2O2 was added to the KO2 reactions at concentrations similar to those in the modified Fenton's reactions (0.1, 0.5, and 1 M), CT degradation increased significantly. Similar results were obtained when 1 M concentrations of other solvents were added to aqueous KO2 reactions, and the observed first-order rate constant for CT degradation correlated strongly (R2 = 0.986) with the empirical solvent polarity (E(T)N) of the added solvents. The results indicate that even dilute concentrations of solvents, including H202, can increase the reactivity of O2- in water, probably by changing its solvation sphere. The higher reactivity of O2- generated in modified Fenton's reagent, which has a less polar nature due to the presence of H2O2, may result in a wider range of contaminant degradation than previously thought possible.  相似文献   

14.
15.
16.
Heterotrophic respiration of ferric iron by Acidiphilium cryptum was investigated in anoxic microcosms with initial media pH values from 1.5 to 3.5. No organic carbon consumption or iron reduction was observed with an initial pH of 1.5, indicating that A. cryptum may not be capable of iron respiration at this pH. Significant iron reduction was observed at pH 2.5 and 3.5, with different effects. When the initial pH was 3.5, pH increased to 4.7-5.5 over 60 days of incubation with simultaneous production of 0.4 g L(-1) Fe2+. However, at an initial pH of 2.5, no significant change in pH was observed during iron respiration, although the accumulation of soluble ferrous iron was significantly higher, averaging 1.1 g L(-1) Fe2+. The speciation of the ferric iron electron acceptor may explain these results. At pH values of 3.5 and higher, precipitated ferric hydroxide Fe- (OH)3 would have been the primary source of ferric iron, with reduction resulting in net production of OH- ions and the significant increases in media pH observed. However at pH 2.5, soluble complexes, FeOH2+ and Fe(OH)2+, may have been the more prevalent electron acceptors, and the alkalinity generated by reduction of complexed iron was low. The existence of charged ferri-hydroxide complexes at pH 2.5 was verified by voltammetry. Results suggest that initiation of bacterial iron reduction may result in neutralization of acid mine drainage. However, this effect is extremely sensitive to iron speciation within a relatively small and critical pH range.  相似文献   

17.
Four heterogeneous catalysts containing Fe including a bentonite-clay-based Fe nanocomposite (Fe-B), hematite (alpha-Fe2O3), amorphous FeOOH, and calcined FeOOH (denoted as FeOOH-M) were employed for the photo-Fenton discoloration and mineralization of 0.2 mM Orange II in the presence of 10 mM H2O2 and 8 W UVC at two different initial solution pH values (3.0 and 6.6). It was found that, at an initial solution pH of 3.0, their photocatalytic activities follow the order Fe-B > FeOOH, FeOOH-M > alpha-Fe2O3. When the Fe-B nanocomposite, FeOOH, and FeOOH-M were used as heterogeneous catalysts, both heterogeneous and homogeneous photo-Fenton reactions were responsible for the discoloration and mineralization of 0.2 mM Orange II because homogeneous photo-Fenton reaction occurred due to the presence of Fe ions leached from the catalysts. At an initial solution pH of 6.6, their photocatalytic activities still follow the order Fe-B > FeOOH, FeOOH-M > alpha-Fe2O3. However, only heterogeneous photo-Fenton reaction accounted for the discoloration and mineralization of 0.2 mM Orange II because Fe leaching from the catalysts was significantly depressed. In the case of alpha-Fe2O3 as a catalyst, whether at an initial solution pH of 3.0 or 6.6, only heterogeneous photo-Fenton reaction happened for the discoloration and mineralization of 0.2 mM Orange II because Fe leaching from the catalyst is negligible. The apparent discoloration kinetics of Orange II with the four catalysts at two different initial solution pH values was also investigated.  相似文献   

18.
Bisphenol A (BPA), an organic compound largely used in the plastic industry as a monomer for production of epoxy resins and polycarbonate, is an emerging contaminant that is released in the environmentfrom bottles and packaging. BPA degradation (118 micromol L(-1)) under sonochemical conditions was investigated in this study, using a 300 kHz frequency, with a 80 W electrical power. Under these conditions, BPA was eliminated by the ultrasound process (-90 min). However, even after long ultrasound irradiation periods (10 h), more than 50% of chemical oxygen demand (COD) and 80% of total organic carbon (TOC) remained in the solution, indicating that most BPA intermediates are recalcitrant toward ultrasonic action. Accumulation of hydrogen peroxide from *OH and *OOH radical recombination was also observed. To increase the efficiency of BPA treatment, experiments combined ultrasound with Fe2+ (100 micromol L(-1)) and/or UV radiation (254 nm): Ultrasound/UV; Ultrasound/Fe2+; Ultrasound/UV/ Fe2+. Both UV and Fe2+ induced hydrogen peroxide dissociation, leading to additional *OH radicals and complete COD and TOC removal. Thus difficulties in obtaining mineralization of micropollutants like BPA through ultrasonic action alone, can be overcome by the Ultrasound/UV/ Fe2+ combination. Moreover, this technique was found to be the most cost-effective one. So, the integrated ultrasound-UV-iron(ll) process was shown to be of interest for the treatment of wastewaters contaminated with BPA.  相似文献   

19.
A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into ?OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to ?OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.  相似文献   

20.
A mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9 uses ferrous iron as a sole source of energy and L-glutamate as a sole source of cellular carbon. Uptake of L-glutamate into OKM-9 cells is absolutely dependent on ferrous iron oxidation. Thus, the Fe(2+)-dependent L-glutamate uptake system of strain OKM-9 is crucial for the bacterium to grow mixotrophically in iron medium with L-glutamate. The relationship between iron oxidation and L-glutamate transport activities was studied. Iron oxidase containing cytochrome a was purified 9-fold from the plasma membrane of OKM-9. A purified iron oxidase showed one rust-colored band following disc gel electrophoresis after incubation with Fe(2+). The Fe(2+)-dependent L-glutamate transport system was also purified 14.5-fold from the plasma membrane using the same purification steps as for iron oxidase. Fe(2+)-dependent L-glutamate and L-cysteine uptake activities of OKM-9 were 0.36 and 0.24 nmol/mg/min, respectively, when a concentration of 18 mM of these amino acids was used as a substrate. Both uptake activities were completely inhibited by potassium cyanide (KCN), suggesting that cytochrome a in the iron oxidase is involved in the transport process. The iron-oxidizing activity of strain OKM-9 was activated 1.7-fold by 80 mM L-glutamate. In contrast, the activity was noncompetitively inhibited by L-cysteine. The Michaelis constant of iron oxidase for Fe(2+) was 12.6 mM and the inhibition constant for L-cysteine was 41.6 mM. A marked inhibition of iron oxidase by 50 mM L-cysteine was completely reversed by the addition of 60 mM L-glutamate. The results suggest the possibility that iron oxidase has a binding site for L-cysteine and the cysteine first bound to the iron oxidase was replaced by the added L-glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号