首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ambient air in 18 residences surrounding an aluminum smelter were sampled to study the relationship between indoor and outdoor polycyclic aromatic hydrocarbons (PAHs). Objectives of the study were to quantify the indoor distribution of PAHs, indoor/outdoor (I/O) concentration ratios, and the relationship among PAH compounds. Correlation coefficients inside residences suggested an indoor source of 2-3 ring PAHs and an external source of 4-6 ring PAHs. The I/O ratios of 4-6 ring PAHs for homes without any substantial indoor sources were below unity, indicating that the presence of these PAHs was attributable to the aluminum smelter. Least squares linear regression of the coupled measurements without indoor sources of 5-6 ring PAHs resulted in average infiltration efficiencies (P(PAH)) of 0.49, 0.20, and 0.47 for benzo[a]pyrene, benzo[k]fluoranthene, and benzo[g,h,i]perylene, respectively. These P(PAH) values suggest that simultaneous measurements of indoor and outdoor concentrations of PAHs > 4 rings predominantly associated with the fine fraction of particulate matter could provide useful estimates of particle infiltration efficiency. Overall, study results indicate that when an industrial facility is the main source of outdoor 4-6 ring PAHs, the contribution of facility emissions may greatly exceed indoor sources in nonsmoking residences.  相似文献   

2.
A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were selected from persons expected to be at elevated risk from exposure to particles, and included 29 persons with hypertension and 8 cardiac patients with implanted defibrillators. Participants were monitored for 7 consecutive days in each of four seasons. One goal of the study was to estimate the contribution of outdoor PM2.5 to indoor concentrations. This depends on the infiltration factor Finf, the fraction of outdoor PM2.5 remaining airborne after penetrating indoors. After confirming with our measurements the findings of previous studies that sulfur has few indoor sources, we estimated an average Finf for each house based on indoor/outdoor sulfur ratios. These estimates ranged from 0.26 to 0.87, with a median value of 0.55. Since these estimates apply only to particles of size similar to that of sulfur particles (0.06-0.5 microm diameter), and since larger particles (0.5-2.5 microm) have lower penetration rates and higher deposition rates, these estimates are likely to be higher than the true infiltration factors for PM2.5 as a whole. In summer when air conditioners were in use, the sulfur-based infiltration factor was at its lowest (averaging 0.50) for most homes, whereas the average Finf for the other three seasons was 0.62-0.63. Using the daily estimated infiltration factor for each house, we calculated the contribution of outdoor PM2.5 to indoor air concentrations. The indoor-generated contributions to indoor PM2.5 had a wider range (0-33 microg/m3) than the outdoor contributions (5-22 microg/m3). However, outdoor contributions exceeded the indoor-generated contributions in 27 of 36 homes. A second goal of the study was to determine the contribution of outdoor particles to personal exposure. This is determined by the "outdoor exposure factor" Fpex, the fraction of outdoor PM2.5 contributing to personal exposure. As with Finf, we estimated Fpex by the personal/outdoor sulfur ratios. The estimates ranged from 0.33 to 0.77 with a median value of 0.53. Outdoor air particles were less important for personal exposures than for indoor concentrations, with the median outdoor contribution to personal exposure just 49%. We regressed the outdoor contributions to personal exposures on measured outdoor PM2.5 at the central site. The regressions had R2 values ranging from 0.19 to 0.88 (median = 0.73). These values provide an indication of the extent of misclassification error in epidemiological estimates of the effect of outdoor particles on health.  相似文献   

3.
Accurate measurement of personal exposure to particulate matter and its constituents requires samplers that are accurate, compact, lightweight, inexpensive, and convenient to use. The personal particulate organic and mass sampler (PPOMS) has been developed to meet these criteria. The PPOMS uses activated carbon-impregnated foam as a combined 2.5-microm size-selective inlet and denuder for assessment of fine particle mass and organic carbon. Proof of the PPOMS concept has been established by comparing mass and organic carbon in particles collected with collocated samplers in Seattle, at a central outdoor site, and in residences. Daily particulate mass concentrations averaged 10.0 +/- 5.2, 12.0 +/- 5.3, and 11.2 +/- 5.1 microg m(-3) for the Federal Reference Method, the Harvard Personal Exposure Monitor, and the PPOMS, respectively, for 10 24-h sampling periods. During a series of PM2.5 indoor organic carbon (OC) measurements from single quartz filters, the apparent indoor OC averaged 7.7 +/- 0.8 microg of C m(-3), which was close to the indoor PM2.5 mass from collocated Teflon filters (7.3 +/- 2.3 microg of C m(-3)), indicating the presence of a large positive OC artifact. In collocated measurements, the PPOMS eliminated this artifact just as well as the integrated gas and particle sampler that incorporated a macroreticular polystyrene-divinylbenzene (XAD-4) resin-coated denuder, yielding OC concentrations of 2.5 +/- 0.4 and 2.4 +/- 1.0 microg of C m(-3), respectively. Thermal analysis for OC indicated that the indoor positive artifact was due to adsorption of gas-phase semivolatile organic compounds (SVOC). This study shows that the PPOMS design provides a 2.5-microm size-selective inlet that also prevents the adsorption of gas-phase SVOC onto quartz filters, thus eliminating the filter positive artifact The PPOMS meets a significant current challenge for indoor and personal sampling of particulate organic carbon. The PPOMS design can also simplify accurate ambient sampling for PM2.5.  相似文献   

4.
Adverse human health effects have been observed to correlate with levels of outdoor particulate matter (PM), even though most human exposure to PM of outdoor origin occurs indoors. In this study, we apply a model and empirical data to explore the indoor PM levels of outdoor origin for two major building types: offices and residences. Typical ventilation rates for each building type are obtained from the literature. Published data are combined with theoretical analyses to develop representative particle penetration coefficients, deposition loss rates, and ventilation-system filter efficiencies for a broad particle size range (i.e., 0.001-10 microm). We apply archetypal outdoor number, surface area, and mass PM size distributions for both urban and rural airsheds. We also use data on mass-weighted size distributions for specific chemical constituents of PM: sulfate and elemental carbon. Predictions of the size-resolved indoor proportion of outdoor particles (IPOP) for various conditions and ambient particle distributions are then computed. The IPOP depends strongly on the ambient particle size distribution, building type and operational parameters, and PM metric. We conclude that an accurate determination of exposure to particles of ambient origin requires explicit consideration of how removal processes in buildings vary with particle size.  相似文献   

5.
Daily PM2.5 samples were repeatedly collected (1-8 times) in the homes of elderly nonsmoking individuals with coronary heart disease in Amsterdam, The Netherlands (33 individuals) and Helsinki, Finland (44 individuals). Sources of indoor PM2.5 were evaluated using a two-way multilinear engine model. Because the indoor elemental data lacked a traffic marker, separation of traffic related PM was attempted by combining the indoor data with fixed site outdoor data that also contained NO. Six outdoor sources, including long-range transport (LRT), urban mixture, oil combustion, traffic, sea-salt, and soil were identified, and three indoor sources were resolved: resuspension, potassium-rich and copper-rich sources. The average contribution of the indoor factors was 6% (1.1 microg m(-3)) and 22% (2.4 microg m(-3)) in Amsterdam and Helsinki, respectively. The highest longitudinal correlations between source-specific outdoor and indoor PM2.5 concentrations were found for LRT and urban mixture; the median R was above 0.6 for most sources. The longitudinal correlations were lower in Helsinki than in Amsterdam. Indoor-generated PM2.5 was not related to ambient concentrations. We conclude that using outdoor and indoor data together improved the source apportionment of indoor PM2.5. The results support the use of fixed site outdoor measurements in epidemiological time-series studies on outdoor air pollution.  相似文献   

6.
Six homes in the metropolitan Boston area were sampled between 6 and 12 consecutive days for indoor and outdoor particle volume and mass concentrations, particle elemental concentrations, and air exchange rates (AERs). Indoor/outdoor (I/O) ratios of nighttime (i.e., particle nonindoor source periods) sulfur, PM2.5 and the specific particle size intervals were used to provide estimates of the effective penetration efficiency. Mixed models and graphical displays were used to assess the ability of the I/O ratios for sulfur to estimate corresponding I/O ratios for PM2.5 and the various particle sizes. Results from this analysis showed that particulate sulfur compounds were primarily of outdoor origin and behaved in a manner that was representative of total PM2.5 in Boston, MA. These findings support the conclusion that sulfur can be used as a suitable tracer of outdoor PM2.5 for the homes sampled in this study. Sulfur was more representative of particles of similar size (0.06-0.5 microm), providing evidence that the size composition of total PM2.5 is an important characteristic affecting the robustness of sulfur-based estimation methods.  相似文献   

7.
Particle mass and number measurements in a church indicate significant increases of indoor particle concentrations during the burning of incense. Generally, varying concentration regimes can be attributed to different "modes of indoor activity" and emission sources. While periods of candle burning are negligible concerning particle concentrations, increases by a factor of 6.9 and 9.1 during incense burning were observed for PM10 and PM1, respectively. At maximum, indoor PM10 shows an 8.1-fold increase in comparison to outdoor measurements. The increase of particles < 2 microm is significantly enhanced in comparison to larger particles. Due to a particle decay rate of 0.9 h(-1) post-service concentrations are elevated for a time span of approximately 24 h above indoor background concentrations.  相似文献   

8.
The indoor environment is an important venue for exposure to fine particulate matter (PM2.5) of ambient (outdoor) origin. In this work, paired indoor and outdoor PM2.5 species concentrations from three geographically distinct cities (Houston, TX, Los Angeles County, CA, and Elizabeth, NJ) were analyzed using positive matrix factorization (PMF) and demonstrate that the composition and source contributions of ambient PM2.5 are substantially modified by outdoor-to-indoor transport. Our results suggest that predictions of "indoor PM2.5 of ambient origin" are improved when ambient PM2.5 is treated as a combination of four distinct particle types with differing infiltration behavior (primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM) rather than as a "single internally mixed entity". Study-wide average infiltration factors (i.e., fraction of ambient PM2.5 found indoors) for Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study homes were 0.51, 0.78, and 0.04 (consistent with P = 0.6, 0.9, and 0.09; k = 0.2, 0.1, and 0.6 h(-1)) for PM2.5 associated with primary combustion, secondary formation (excluding nitrate), and mechanical generation, respectively. Modification of the composition, properties, and source contributions of ambient PM2.5 in indoor environments has important implications for exposure mitigation strategies, development of health hypotheses, and evaluation of exposure error in epidemiological studies that use ambient central-site PM2.5 as a surrogate for PM2.5 exposure.  相似文献   

9.
Particulate matter (PM) is a significant contributor to death and disease globally. This paper summarizes the work of an international expert group on the integration of human exposure to PM into life cycle impact assessment (LCIA), within the UNEP/SETAC Life Cycle Initiative. We review literature-derived intake fraction values (the fraction of emissions that are inhaled), based on emission release height and "archetypal" environment (indoor versus outdoor; urban, rural, or remote locations). Recommended intake fraction values are provided for primary PM(10-2.5) (coarse particles), primary PM(2.5) (fine particles), and secondary PM(2.5) from SO(2), NO(x), and NH(3). Intake fraction values vary by orders of magnitude among conditions considered. For outdoor primary PM(2.5), representative intake fraction values (units: milligrams inhaled per kilogram emitted) for urban, rural, and remote areas, respectively, are 44, 3.8, and 0.1 for ground-level emissions, versus 26, 2.6, and 0.1 for an emission-weighted stack height. For outdoor secondary PM, source location and source characteristics typically have only a minor influence on the magnitude of the intake fraction (exception: intake fraction values can be an order of magnitude lower for remote-location emission than for other locations). Outdoor secondary PM(2.5) intake fractions averaged over respective locations and stack heights are 0.89 (from SO(2)), 0.18 (NO(x)), and 1.7 (NH(3)). Estimated average intake fractions are greater for primary PM(10-2.5) than for primary PM(2.5) (21 versus 15), owing in part to differences in average emission height (lower, and therefore closer to people, for PM(10-2.5) than PM(2.5)). For indoor emissions, typical intake fraction values are ~1000-7000. This paper aims to provide as complete and consistent an archetype framework as possible, given current understanding of each pollutant. Values presented here facilitate incorporating regional impacts into LCIA for human health damage from PM.  相似文献   

10.
Short-term monitoring of individual particulate matter (PM) exposures on subjects and inside residences in health effect studies have been sparse due to the lack of adequate monitoring devices. The recent development of small and portable light scattering devices, including the Radiance nephelometer (neph) and the personal DataRAM (pDR) has made this monitoring possible. This paper evaluates the performance of both the passive pDR and neph (without any size fractionation inlet) against measurements from both Harvard impactors (HI2.5) and Harvard personal environmental monitors (HPEM2.5) for PM2.5 in indoor, outdoor, and personal settings. These measurements were taken at the residences and on the person of nonsmoking elderly subjects across the metropolitan Seattle area and represent a wide range of light scattering measurements directly related to exposures and health effects. At low PM levels, nephs provided finer resolution and more precise measurements (precision = 3-8% and uncertainty = 2.8 x 10(-7) m(-1) or <1 microg/m3) than the pDRs. The unbiased precision of pDRs above 10 microg/m3 is around 5% (with an unbiased uncertainty of 4.4 microg/m3). The 24-h average responses of the pDR and neph, as compared to 24-h integrated gravimetric measurements, are not affected by indoor sources of PM. When regressed against 24-h gravimetric measurements, nephs showed higher coefficients of determination (R2 = 0.81-0.93) than pDRs (R2 = 0.77-0.84). The default mass calibration on the pDRs generally overestimated indoor HI2.5 measurements by 56%. When carried by subjects, the pDR overestimated the HPEM2.5 measurements by approximately 27%. Collocated real-time indoor nephs and pDRs at diverse residential sites had varied coefficients of determination across homes (R2 = 0.75-0.96), and the difference between pDR and neph responses increased during cooking hours. This difference was larger during baking or frying episodes than during other cooking or cleaning activities. Relative humidity, ranging between 25% and 64% indoors in our study, was not a significant factor affecting the differences in neph or pDR response. In summary, for nonsmoking residences, the mass scattering efficiency (m2/g) of a stationary indoor neph on a 24-h basis does not vary by residence, including residences with and without cooking activities. This is also true forthe pDR. These same stationary indoor pDRs and nephs correlate well with each other, even on a 10-min basis, in the absence of indoor source activities. The fact that these activities comprised a relatively small percentage (cooking + cleaning = 2.3%) of the overall sampling time meant that the overall correlation between these two instruments for all time periods was good. However, when examining the cooking and cleaning periods separately, the correlation was not very good. Thus, during these short-term PM episodes, the 24-h average calibrations versus gravimetric mass should be used with caution. Both devices should be potentially useful in future exposure assessment and health effects studies.  相似文献   

11.
Indoor and outdoor concentrations of six chlordane components (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane, and MC5) were measured at 157 residences, all of which were inhabited by nonsmoking individuals, in three urban areas during June 1999-May 2000. The analyses were conducted on a subset of 48 h integrated samples collected in Los Angeles County, CA, Houston, TX, and Elizabeth, NJ within the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. Both particle-bound (PM2.5; quartz fiber filter) and vapor-phase (PUF sorbant) chlordane concentrations were separately measured by GC/EI MS after solvent extraction. The outdoor (gas + particle) total chlordane (trans-chlordane + cis-chlordane + trans-nonachlor + cis-nonachlor) concentrations ranged from 0.036 to 4.27 ng m(-3) in Los Angeles County, from 0.008 to 11.00 ng m(-3) in Elizabeth, and from 0.062 to 1.77 ng m(-3) in Houston. The corresponding indoor total chlordane concentrations ranged from 0.037 to 112.0 ng m(-3) in Los Angeles County, from 0.260 to 31.80 ng m(-3) in Elizabeth, and from 0.410 to 38.90 ng m(-3) in Houston study homes. Geometric mean concentrations were higher in indoor air than outdoor air (1.98 vs 0.58 ng m(-3) in CA; 1.30 vs 0.17 ng m(-3) in NJ; 4.18 vs 0.28 ng m(-3) in TX), which suggests there are significant indoor sources of chlordane species in a subset of homes in each of the three cities. Calculated source strengths relate to home age, with the highest apparent indoor source strengths occurring in unattached single-family homes built during the period from 1945 to 1959. Principle indoor sources of chlordanes likely include volatilization from residues of indoor application of chlordanes and infiltration from subsurface and foundation application of chlordane-containing termiticides during home construction.  相似文献   

12.
Recent studies on separated particle-size fractions highlight the health significance of particulate matter smaller than 2.5 microm (PM2.5), but gravimetric methods do not identify specific particle sources. Diesel exhaust particles (DEP) contain elemental carbon (EC), the dominant light-absorbing substance in the atmosphere. Black smoke (BS) is a measure for light absorption of PM and, thus, an alternative way to estimating EC concentrations, which may serve as a proxy for diesel exhaust emissions. We analyzed PM2.5 and BS data collected within the EXPOLIS study (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) in Athens, Basel, Helsinki, and Prague. 186 indoor/outdoor filter pairs were sampled and analyzed. PM2.5 and BS levels were lowest in Helsinki, moderate in Basel, and remarkably higher in Athens and Prague. In each city, Spearman correlation coefficients of indoor versus outdoor were higher for BS (range rspearman: 0.57-0.86) than for PM2.5 (0.05-0.69). In a BS linear regression model (all data), outdoor levels explained clearly more of indoor variation (86%) than in the corresponding PM2.5 model (59%). In conclusion, ambient BS seizes a health-relevant fraction of fine particles to which people are exposed indoors and outdoors and exposure to which can be assessed by monitoring outdoor concentrations. BS measured on PM2.5 filters can be recommended as a valid and cheap additional indicator in studies on combustion-related air pollution and health.  相似文献   

13.
Epidemiological studies routinely use central-site particulate matter (PM) as a surrogate for exposure to PM of ambient (outdoor) origin. Below we quantify exposure errors that arise from variations in particle infiltration to aid evaluation of the use of this surrogate, rather than actual exposure, in PM epidemiology. Measurements from 114 homes in three cities from the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study were used. Indoor PM2.5 of outdoor origin was calculated as follows: (1) assuming a constant infiltration factor, as would be the case if central-site PM were a "perfect surrogate" for exposure to outdoor particles; (2) including variations in measured air exchange rates across homes; (3) also incorporating home-to-home variations in particle composition, and (4) calculating sample-specific infiltration factors. The final estimates of PM2.5 of outdoor origin take into account variations in building construction, ventilation practices, and particle properties that result in home-to-home and day-to-day variations in particle infiltration. As assumptions became more realistic (from the first, most constrained model to the fourth, least constrained model), the mean concentration of PM2.5 of outdoor origin increased. Perhaps more importantly, the bandwidth of the distribution increased. These results quantify several ways in which the use of central site PM results in underestimates of the ambient PM2.5 exposure distribution bandwidth. The result is larger uncertainties in relative risk factors for PM2.5 than would occur if epidemiological studies used more accurate exposure measures. In certain situations this can lead to bias.  相似文献   

14.
Because people spend approximately 85-90% of their time indoors, it is widely recognized that a significant portion of total personal exposures to ambient particles occurs in indoor environments. Although penetration efficiencies and deposition rates regulate indoor exposures to ambient particles, few data exist on the levels or variability of these infiltration parameters, in particular for time- and size-resolved data. To investigate ambient particle infiltration, a comprehensive particle characterization study was conducted in nine nonsmoking homes in the metropolitan Boston area. Continuous indoor and outdoor PM2.5 and size distribution measurements were made in each of the study homes over weeklong periods. Data for nighttime, nonsource periods were used to quantify infiltration factors for PM2.5 as well as for 17 discrete particle size intervals between 0.02 and 10 microns. Infiltration factors for PM2.5 exhibited large intra- and interhome variability, which was attributed to seasonal effects and home dynamics. As expected, minimum infiltration factors were observed for ultrafine and coarse particles. A physical-statistical model was used to estimate size-specific penetration efficiencies and deposition rates for these study homes. Our data show that the penetration efficiency depends on particle size as well as home characteristics. These results provide new insight on the protective role of the building shell in reducing indoor exposures to ambient particles, especially for tighter (e.g., winterized) homes and for particles with diameters greater than 1 micron.  相似文献   

15.
Airborne particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in six size fractions < 1.8 microm particle diameter at one site upwind and two sites downwind of the Interstate 5 freeway in San Diego, CA. The smallest size fraction collected was exclusively in the ultrafine size range (D(p) < 0.1 microm; PM0.1). Size distributions of hopanes, steranes, and PAHs peaked between 0.10-0.18 microm particle aerodynamic diameter with a tail extending into the PM0.1 size range. This pattern is similar to previous dynamometer studies of hopane, sterane, and PAH size distributions emitted from gasoline- and diesel-powered vehicles. Size-resolved source profiles were combined to form an "on-road" profile for motor oil, diesel, and gasoline contributions to EC and OC. The resulting equations were used to predict source contributions to the size distributions of EC and OC in the roadside environment. The method successfully accounted for the majority of the carbonaceous material in particles with diameter < 0.18 microm, with significant residual material in larger size fractions. The peak in both the measured and predicted EC size distribution occurred between 0.1-0.18 microm particle aerodynamic diameter. The predicted OC size distribution peaked between 0.1-0.18 microm particle diameter, butthe measured OC size distribution peaked between 0.56-1.0 microm particle diameter, possibly because of secondary organic aerosol formation. Predicted OC concentrations in particles with diameter < 0.18 microm were greater than measured values 18 m downwind of the roadway but showed good agreement 37 m downwind. The largest source contributions to the PM0.1 and PM0.18 size fractions were different. PM0.18 was dominated by diesel fuel and motor oil combustion products while PM0.1 was dominated by diesel fuel and gasoline fuel combustion products. Total source contributions to ultrafine (PM0.1) EC concentrations 37 m downwind of the roadway were 44 +/- 6% diesel fuel, 21 +/- 1% gasoline, 5 +/- 6% motor oil, and 30% unknown. Total source contributions to ultrafine (PM0.1) OC concentrations 37 m downwind of the roadway were 46 +/- 5% diesel fuel, 44 +/- 5% gasoline, 20 +/- 15% motor oil with a slight overprediction (11%). Diesel fuel appears to make the single largest contribution to ultrafine (PM0.1) particle mass given the fleet distribution during the current experiment.  相似文献   

16.
Recent studies associate particulate air pollution with adverse health effects. The indoor exposure to particles of outdoor origin is not well-characterized, particularly for individual chemical species. In response to this, a field study in an unoccupied, single-story residence in Clovis, CA, was conducted. Real-time particle monitors were used both outdoors and indoors to quantity PM2.5 nitrate, sulfate, and carbon. The aggregate of the highly time-resolved sulfate data, as well as averages of these data, was fit using a time-averaged form of the infiltration equation, resulting in reasonable values for the penetration coefficient and deposition loss rate. In contrast, individual values of the indoor/outdoor ratio can vary significantly from that predicted by the model for time scales ranging from a few minutes to several hours. Measured indoor ammonium nitrate levels were typically significantly lower than expected solely on the basis of penetration and deposition losses. The additional reduction is due to the transformation of ammonium nitrate into ammonia and nitric acid gases indoors, which are subsequently lost by deposition and sorption to indoor surfaces. This result illustrates that exposure assessments based on total outdoor particle mass can obscure the actual causal relationships for indoor exposures to particles of outdoor origin.  相似文献   

17.
The association between exposure to indoor particulate matter (PM) and damage to cultural assets has been of primary relevance to museum conservators. PM-induced damage to the "Last Supper" painting, one of Leonardo da Vinci's most famous artworks, has been a major concern, given the location of this masterpiece inside a refectory in the city center of Milan, one of Europe's most polluted cities. To assess this risk, a one-year sampling campaign was conducted at indoor and outdoor sites of the painting's location, where time-integrated fine and coarse PM (PM(2.5) and PM(2.5-10)) samples were simultaneously collected. Findings showed that PM(2.5) and PM(2.5-10) concentrations were reduced indoors by 88 and 94% on a yearly average basis, respectively. This large reduction is mainly attributed to the efficacy of the deployed ventilation system in removing particles. Furthermore, PM(2.5) dominated indoor particle levels, with organic matter as the most abundant species. Next, the chemical mass balance model was applied to apportion primary and secondary sources to monthly indoor fine organic carbon (OC) and PM mass. Results revealed that gasoline vehicles, urban soil, and wood-smoke only contributed to an annual average of 11.2 ± 3.7% of OC mass. Tracers for these major sources had minimal infiltration factors. On the other hand, fatty acids and squalane had high indoor-to-outdoor concentration ratios with fatty acids showing a good correlation with indoor OC, implying a common indoor source.  相似文献   

18.
The indoor and outdoor concentrations of 30 polycyclic aromatic hydrocarbons (PAHs) were measured in 55 nonsmoking residences in three urban areas during June 1999-May 2000. The data represent the subset of samples collected within the Relationship of Indoor, Outdoor, and Personal Air study (RIOPA). The study collected samples from homes in Los Angeles, CA, Houston, TX, and Elizabeth, NJ. In the outdoor samples, the total PAH concentrations (sigmaPAH) were 4.2-64 ng m(-3) in Los Angeles, 10-160 ng m(-3) in Houston, and 12-110 ng m(-3) in Elizabeth. In the indoor samples, the concentrations of sigmaPAH were 16-220 ng m(-3) in Los Angeles, 21-310 ng m(-3) in Houston, and 22-350 ng m(-3) in Elizabeth. The PAH profiles of low molecular weight PAHs (3-4 rings) in the outdoor samples from the three cities were not significantly different. In contrast, the profiles of 5-7-ring PAHs in thesethree citieswere significantlydifferent, which suggested different dominant PAH sources. The signatures of 5-7-ring PAHs in the indoor samples in each city were similar to the outdoor profiles, which suggested that indoor concentrations of 5-7-ring PAHs were dominated by outdoor sources. Indoor-to-outdoor ratios of the PAH concentrations showed that indoor sources had a significant effect on indoor concentrations of 3-ring PAHs and a smaller effect on 4-ring PAHs and that outdoor sources dominated the indoor concentrations of 5-7-ring PAHs.  相似文献   

19.
We measured exposure to fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs), including carcinogenic PAHs, in multiple locations for a diverse population of participants who resided in Shizuoka, Japan. In summer and winter 2002 we surveyed personal concentrations, those of four primary indoor microenvironments-living room, bedroom, kitchen (summer only), and workplace--and those outside the subjects' houses. Concentrations of PM2.5 and PAHs tended to be higher during winter. Median PM2.5 concentration was highest in living room samples during winter but in personal samples during summer. The median PAH concentrations normalized to the cancer potency equivalence factor of benzo[a]pyrene (BaP-TEQ) was highest in the bedroom during winter but outdoors in summer. Personal exposure level profiles differed markedly between smokers and nonsmokers. Personal exposures to BaP ([BaP]p) and BaP-TEQ ([BaP-TEQ]P) in nonsmokers were strongly correlated. Personal exposures of nonsmokers, as calculated from the corresponding time-weighted indoor and outdoor concentrations, were consistent with measured levels of BaP but not PM2.5. Personal exposure of nonsmokers to BaP, as calculated from the time-weighted living room, bedroom, and either workplace or outdoor concentrations, accounted for 92-107% of the measured levels of BaP-TEQ.  相似文献   

20.
Emissions of particulate matter (PM) and a broad suite of target volatile organic compounds (VOCs) in total, main-stream (MS) and side-stream (SS) smoke emissions are measured for six types of commercial cigarettes. The suitability of 2,5-dimethyl furan (DMF) as a tracer for environmental tobacco smoke (ETS) is investigated using laboratory results and a field study of 47 residences. Over 30 VOCs were characterized in cigarette smoke, including several that have not been reported previously. "regular tar", "low tar", menthol, and nonmenthol cigarettes showed only minor differences in PM and VOC emissions. When total emissions are considered, PM emissions averaged 18 +/- 2 mg cigarette(-1) and VOC emissions averaged 3644 +/- 160 mg cigarette(-1). DMF appears to satisfy all requirements for a tracer, namely, uniqueness, detectability, similar emission factors across tobacco products (211 +/- 16 microg cigarette(-1)), consistent proportions to other ETS compounds, and behavior similar to other ETS components in relevant environments. On the basis of field study results, DMF more reliably indicated smoking status than occupant-completed questionnaires, and cigarette smoking was responsible for significant fractions of benzene (50%), styrene (49%), and other VOCs in the smoker's homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号