首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Distributions of alkylphenols (APs) [i.e., nonylphenol (NP), octylphenol (OP)], and nonylphenol monoethoxylate (NP1EO) in wastewater effluents, river water, and riverine and bay sediments in the Tokyo metropolitan area were demonstrated. During sewage treatments, NP and OP were efficiently removed from the sewage effluents through activated sludge treatments. Greater removal for NP (93% on average) than OP (84% on average) was consistent with their partitioning behavior to particles in primary and secondary effluents. NP concentrations in the river water samples ranged from 0.051 to 1.08 microg/L with higher concentrations in summer and spring than in colder seasons. In the river water samples, approximately 20% of NP was found in the particulate phase. Organic carbon-normalized apparent partition coefficients (K'OC) for NP (10(5.22 +/- 0.38)) and OP (10(4.65 +/- 0.42)) were 1 order of magnitude higher than those expected from their octanol-water partition coefficients (K(OW)), indicating strong affinity of APs to aquatic particles. Among NP isomers, no significant differences in their K'OC values were suggested. This is consistent with surprisingly uniform isomer peak profiles among the technical standard and all the environmental samples analyzed. NP and OP were widely distributed in the river sediments in Tokyo, and relatively high concentrations (0.5-13.0 microg/g dry) of NP were observed in a long reach (approximately 10 km) in the Sumidagawa River. In situ production of APs in the river sediment was suggested. Seaward decreasing trend in APs concentration was observed from the estuary to the Tokyo Bay. APs were well preserved in a sediment core collected from the bay. The profile shows subsurface maximum of AP concentrations in the layer deposited around the mid-1970s. The recent decrease in AP concentrations can be attributed to the legal regulation of industrial wastewater in the early 1970s.  相似文献   

2.
Deposition of arsenic to the sediments of Haiwee Reservoir (Olancha, CA) has dramatically increased since March 1996 as a result of an interim strategy for arsenic management in the Los Angeles Aqueduct (LAA) water supply. Ferric chloride and cationic polymer are introduced into the Aqueduct at the Cottonwood treatment plant, 27 km north of the Haiwee Reservoir. This treatment decreases the average arsenic concentration from 25 microg/L above Cottonwood to 8.3 microg/L below Haiwee. Iron- and arsenic-rich flocculated solids are removed by deposition to the reservoir sediments. Analysis of sediments shows a pronounced signature of this deposition with elevated sediment concentrations of iron, arsenic, and manganese relative to a control site. Sediment concentrations of these elements remain elevated throughout the core length sampled (ca. 4% iron and 600 and 200 microg/g of manganese and arsenic, respectively, on a dry weight basis). A pore water profile revealed a strong redox gradient in the sediment. Manganese in the pore waters increased below 5 cm; iron and arsenic increased below 10 cm and were strongly correlated, consistent with reductive dissolution of iron oxyhydroxides and concurrent release of associated arsenic to solution. X-ray absorption near-edge spectroscopy revealed inorganic As(V) present only in the uppermost sediment (0-2.5 cm) in addition to inorganic As(III). In the deeper sediments (to 44 cm), only oxygen-coordinated As(III) was detected. Analysis of the extended X-ray absorption fine structure spectrum indicates that the As(III) at depth remains associated with iron oxyhydroxide. We hypothesize that this phase persists in the recently deposited sediment despite reducing conditions due to slow dissolution kinetics.  相似文献   

3.
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.  相似文献   

4.
The ubiquity of nonylphenol (NP) in aquatic environments has been well documented, and the long-term fate of NP in sediments is a concern from the viewpoint of risk assessment due to its endocrine-disrupting effects. This paper reports on the assessment of long-term fate of NP in marine sediments by determining extractable and nonextractable fractions of NP in surface sediments and a sediment core from Bohai Bay, North China. The extractable fraction was operationally defined as the fraction of NP that was extracted with a solvent mixture of methanol/methylene chloride, and the nonextractable fraction was the portion of NP that can be released from the sediments by alkaline hydrolyzing after the initial solvent extraction. The total concentrations (extractable and nonextractable) of NP were 3.4-34.3 ng/g dw in the surface sediments and 2.2-17.7 ng/g dw in the sediment core. Depending on the sedimentation time, the percentage of nonextractable NP relative to the total NP in the core ranged from 38 to 99%. Based on the relationship between the percentage of nonextractable NP in sediments and sedimentation time, the sequestration rate of NP in the sediment core from Bohai Bay was estimated to be 0.94% x a(-1). These results have important implications in understanding the geochemical fate of NP in sediments.  相似文献   

5.
This paper reports on extensive polychlorinated biphenyl (PCB) dechlorination measured in Lake Hartwell (Pickens County, SC) sediments. Vertical sediment cores were collected from 18 locations in Lake Hartwell (Pickens County, SC) and analyzed in 5-cm increments for PCB congeners. The preferential loss of meta and para chlorines with sediment depth demonstrated that PCBs in the sediments underwent reductive dechlorination after burial. Notably, ortho chlorines were highly conserved for more than 5 decades; since the first appearance of PCBs, ca. 1950-1955. These dechlorination characteristics resulted in the accumulation of lower chlorinated congeners dominated by ortho chlorine substituents. Dechlorination rates were determined by plotting the numbers of meta plus para chlorines per biphenyl molecule (mol of chlorine/mol of PCB) with sediment age. Regression analyses showed linear correlations between meta plus para chlorine concentrations with time. The average dechlorination rate was 0.094 +/- 0.063 mol of Cl/mol of PCB/yr. The rates measured using the 2001 cores were approximately twice those measured using the 2000 cores, most likely because the 2001 cores were collected only at transects O, L, and I, which had the highest rates measured in 2000. An inverse of the dechlorination rates indicated that 16.4 +/- 11.6 yr was required per meta plus para chlorine removal (ranging from 4.3 to 43.5 yr per chlorine removal). The rates determined from this study were 1-2 orders of magnitude lower than rates reported from laboratory microcosm studies using Hudson River and St. Lawrence River sediments, suggesting that dechlorination rates reported for laboratory experiments are much higher than those occurring in situ.  相似文献   

6.
Using lake sediments to infer past total mercury and methylmercury loading to the environment requires that diagenetic processes within the sediment do not significantly affect the concentrations or net accumulation rates of the mercury species. Because carbon is lost during early sediment diagenesis, the close link between carbon and mercury raises the question of how reliable lake sediments are as archives of total mercury and methylmercury loading. In this study we used a series of freeze cores taken in a lake with varved (annually laminated) sediment to assess the stability of total mercury and methylmercury over time. By tracking material deposited in specific years in cores collected in different years, we found that despite a 20--25% loss of carbon in the first 10--15 years, there was no apparent loss of total mercury over time; hence, lake sediments can be considered as reliable archives. However, over the first 5--8 years after sedimentation, about 30--40% of the methylmercury was lost (a decrease of 0.025--0.030 microg MeHg m(-2) yr(-1)), suggesting that sediment profiles showing increasing methylmercury concentrations toward the sediment surface are in large part an artifact of diagenetic processes (net demethylation), rather than a record of changes in methylmercury loading.  相似文献   

7.
The isotopic composition and concentrations of Pb in the sediments of the Sea of Galilee (Lake Kinneret) were measured. The studied sediments have been deposited in the lake since the early 1900s (ca. 1920), hence Pb data record the transition from a period when the lake vicinity was sparsely populated to the present (approximately 100,000 people living in the area around the lake). In general, there is either a constant or a relatively slow increase in Pb concentrations from 40 cm depth (3.5-4.4 microg/g; ca. 1920) to 17 +/- 2 cm below the sediment-water interface (3.7-7.2 microg/g;), which was deposited in the mid-1960s. From 17 +/- 2 cm below the surface, there is a much faster increase up to 7 +/- 2 cm below the surface (from 6.5 to 11.5 microg/g; 1982-1983), and from 7 +/- 2 cm there is a gradual decrease in Pb concentrations toward the sediment-water interface. At station G, near the outlet of the Jordan River, Pb concentrations drop between 29 and 25 cm below the surface, probably reflecting changes in the particulate load of the Jordan River due to the drying out of the Hula Swamp in the early 1950s. 206Pb/207Pb values in all the stations record most of the shifts displayed by Pb concentrations in the sediment. The estimated value of total Pb deposited annually in the lake sediment in the early 1990s is very close to the value obtained from measurements of Pb fluxes to the lake from eolian and fluvial sources. On the basis of the linear relationship between 206Pb/207Pb (or 208Pb/207Pb) and 1/[Pb], we argue that two end-members contribute most of the Pb to the lake sediments. Sources of Pb to the lake include (i) the weathering of basalt from the eastern Galilee and the Golan Heights contributing 2.6 +/- 0.5 microg/g Pb to the sediment and (ii) anthropogenic Pb that is affecting both surface and deep (from 30 to 40 cm) lake sediments. At station S, a third source, Pb released from soils developed on carbonates, should be considered as well.  相似文献   

8.
Breams (Abramis brama) and zebra mussels (Dreissena polymorpha) from freshwater, and common mussels (Mytilus edulis) from marine ecosystems, archived in the German Environmental Specimen Bankwere analyzed for the presence of 4-nonylphenol (NP), 4-tert-octylphenol (OP), nonylphenol monoethoxylate (NP1EO), and octylphenol monoethoxylate (OP1EO). The samples were collected in the German rivers Elbe, Rhine, and Saar, and in Lake Belau between 1992 and 2001, as well as in the North Sea and Baltic Sea between 1985 and 2001. The main purpose of the study was to investigate the effectiveness of imposed reduction measures regarding the use of alkylphenol ethoxylates. NP1EO and OP were detected in all breams. NP was predominantly above the limit of quantification (LOQ, 2 ng/g; all data on a wet weight basis), and OP1EO was mostly below the LOQ (0.2 ng/g). Maximal concentrations of 112 ng/g NP, 259 ng/g NP1EO, 5.5 ng/g OP, and 2.6 ng/g OP1EO were found in Saar breams from 1994. NP was detected in all zebra mussels from the river Elbe (up to 41 ng/g), whereas in rather few samples OP and NP1EO were found at low levels. OP1EO was not detected in any sample. Concentrations in mussels and breams from the reference site Lake Belau were below the LOQ for all compounds. In marine biota NP was found until 1997 with maximum concentrations up to 9.7 ng/g, whereas NP1EO was detected at levels between 1.7 and 12.9 ng/g in very few samples collected at the end of the 1980s. A tendency of the concentrations to decrease was obvious for all sampling sites; it was most pronounced for NP1EO and NP after 1996/1997. The effectiveness of the reduction measures is most evident at the Saar sampling site Güdingen and the North Sea sampling site Eckwarderh?rne.  相似文献   

9.
The occurrence of alkylphenol and alkylphenol ethoxylates (APEs) was determined over a 74-mile length of the Cuyahoga River, Ohio. Measurable levels of both the octyl and nonyl forms of these abundantly used nonionic surfactants were observed with the nonylphenol (NP) plus nonylphenol ethoxylates (NPEs) typically accounting for greater than 90% of the total APEs in each sample. For all media (water, fish, and sediment) the total NPE (NP + NPE) concentrations were higher in the more urbanized downstream section of the river. Maximum water and fish values were observed immediately downstream (2.1 miles) from the discharge of the Akron WWTP located 35.31 miles from the river mouth and the sediment maxima occurred at the most downstream site near Cleveland. The ranges in concentration fortotal NPEs and their ethoxylate (EO) makeup were as follows: 32-920 ug/kg wet wt (NP 0 to 2 EO) for carp; 0.13-1.0 ug/L (NP 0 to 3 EO) for water; and 250-1020 ug/kg dry wt (NP 0 to 5 EO) for sediment. When the higher ethoxymers (NP 6 to 17 EO) were added to these sediment totals, the average total estimated NPE concentrations were 1.3-1.8 times higher.  相似文献   

10.
Short-chain chlorinated paraffins (polychlorinated-[C10-C13]-n-alkanes) were measured in Lake Ontario sediments collected during a lake-wide survey to characterize spatial and temporal trends in contamination. The Lake Ontario average SCCP sediment concentration was 49 ng/g (dry wt), which was somewhat higher than the lake-wide average for sigmaDDT (32 ng/g). Individual stations in each of the depositional basins exhibited the highest concentrations, ranging from 147 ng/g (dry wt) to 410 ng/g at an index station in the Niagara (western) basin. Relative average contributions of the carbon chain groups to total SCCPs on a lake-wide basis were as follows: sigmaC10 = 24%, sigmaC11 = 35%, sigmaC12 = 34%, sigmaC13 = 6.6%. Assessment of core profiles and estimates of SCCP fluxes indicated that an area of the western end of Lake Ontario is heavily impacted (SCCP flux of 170 microg/m2 yr) and potentially influenced by local industrial sources of SCCPs. Maximum accumulation of SCCPs in this area of the western basin occurred in the mid-1970s. In contrast, SCCP concentrations in a core from a site in the central area of the lake (SCCP flux of 8.0 microg/m2 yr) were more similar to levels characteristic of remote locations primarily impacted by atmospheric sources.  相似文献   

11.
The elimination of nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), nonylphenol carboxylates (NP1EC and NP2EC) and their brominated and chlorinated derivatives during drinking water treatment process in Sant Joan Despf waterworks in Barcelona was investigated utilizing a recently developed, highly sensitive LC-MS-MS method. The concentration of these potentially estrogenic compounds in raw water entering waterworks (taken from the Llobregat River, NE Spain) ranged from 8.3 to 22 microg/L, with NP2EC being the most abundant compound. Prechlorination reduced the concentration of short-chain ethoxy NPECs and NPEOs by about 25-35% and of NP by almost 90%. However, this reduction of concentrations was partially due to their transformation to halogenated derivatives. After prechlorination, halogenated nonylphenolic compounds represented approximately 13% of the total metabolite pool, of which 97% were in the form of brominated acidic metabolites. The efficiency of further treatment steps to eliminate nonylphenolic compounds (calculated for the sum of all short-chain ethoxy metabolites including halogenated derivatives) was as follows: settling and flocculation followed by rapid sand filtration (7%), ozonation (87%), GAC filtration (73%), and final disinfection with chlorine (43%), resulting in overall elimination ranging from 96 to 99% (mean 98% for four sampling dates). A few of the nonylphenolic compounds (NP, NP1EC, and NP2EC) were also identified in drinking water; however, the residues detected were generally below 100 ng/L, with one exception for NP2EC in November 2001 when a concentration of 215 ng/L was detected.  相似文献   

12.
We describe the development of a novel method for real-time in situ characterization of polycyclic aromatic hydrocarbons (PAHs) in submerged freshwater sediments. Laser-induced fluorescence (LIF) spectroscopy, a mature technique for PAH characterization in terrestrial sediments, was adapted for shipboard use. A cone penetrometer-type apparatus was designed for probe penetration at a constant rate (1 cm/s) to a depth of 3 m. A field-portable LIF system was used for in situ measurements in which the output of a pulsed excimer laser was transmitted by optical fiber to a sapphire window (6.4-mm o.d.) in the probe wall; fluorescent emission was collected by a separate optical fiber for transmission to the spectrometer on deck. Four wavelengths (340, 390, 440, 490 nm) were selected via optical delay lines, and multiple-wavelength waveforms were created. These multiple-wavelength waveforms contain information on the fluorescence frequency, intensity, and emission decay rate. Field testing was conducted at 10 sites in Milwaukee Harbor (total PAH concentrations ranged from approximately 10 to 650 microg/g); conventional sediment core samples were collected concurrently. The core samples were analyzed by EPA methods 3545 (pressurized fluid extraction, PFE) and 8270C (gas chromatography-mass spectrometry, GC-MS) for PAHs. A partial least-squares regression (PLSR) model wasthen created based on laboratory LIF measurements and PFE-GC-MS of the core samples. The PLSR model was applied to the in situ field test data, and 13 of the 16 EPA-regulated PAHs were quantified with a relative error of <30% overall (the remaining three PAHs were found at levels insufficient to quantify). We additionally describe preliminary source apportionment relationships that were revealed by the PLSR model for the in situ LIF measurements.  相似文献   

13.
The environmental behavior of nonylphenol ethoxylates (A9PEO) and their metabolites was investigated in field studies in the two Dutch estuaries Western Scheldt and the Rhine estuary. Using liquid chromatography-electrospray mass spectrometry (LC-ES-MS) analysis after solid-phase extraction, A9PEO, nonylphenol (NP), and the carboxylated metabolites (A9PEC) were determined in surface water and sediments. Maximum dissolved concentrations of 2.3, 0.9, and 8.1 microg L(-1), respectively, were found. In sediments, maximum concentrations of 242 and 1080 ng g(-1) for A9PEO and NP were observed. In almost half of the sediment samples, concentrations of A9PEC in sediments were below the detection limit. Occasionally relatively high values were observed, with a maximum of 239 ng g(-1). Metabolites of the carboxy alkylphenoxy ethoxy acetic acids (CAPEC) type could not be detected in any of the sediment or water samples. In the Scheldt estuary, dissolved concentration profiles showed nonconservative behaviorfor all detected compound groups. While A9PEO and NP concentrations strongly decreased along the salinity gradient, this decrease was weaker for the A9PEC metabolites. The increasing concentration ratio of A9PEC/A9PEO clearly illustratesthe important role that aerobic biodegradation plays in the estuarine fate of these compounds. It is concluded that the oxidative hydrolytic degradation pathway is the main degradation route in this nonstratified estuary. At high salinities, where concentrations drop to background levels of around 50 ng L(-1), this ratio decreases to about unity. Simple model calculations show that this can be explained if continuous diffuse discharges (e.g. from the intensive shipping in the estuary) are assumed. For the stratified Rhine estuary the water concentration profiles are less pronounced, possibly due to more complicated and turbulent water flows and point sources from the Rotterdam harbors.  相似文献   

14.
Elevated As concentrations in shallow groundwater pose a major health threat in Bangladesh and similarly affected countries, yet there is little consensus on the mechanism of As release to groundwater or how it might be influenced by human activities. In this study, the rate of As release was measured directly with incubations lasting 11 months, using sediment and groundwater collected simultaneously in Bangladesh and maintained under anaerobic conditions throughout the study. Groundwater and gray sediment were collected as diluted slurries between 5 and 38 m in depth, a range over which ambient groundwater As concentrations increased from 20 to 100 microg L(-1). Arsenic was released to groundwater in slurries from 5 and 12 m in depth at a relatively constant rate of 21 +/- 4 (2 sigma) and 23 +/- 6 microg As kg(-1) yr(-1), respectively. Amendment with a modest level of acetate increased the rate of As release only at 12 m (82 +/- 18 mirog kg(-1) yr(-1)). Although the groundwater As concentration was initially highest at 38 m depth, no release of As was observed. These results indicate that the spatial distribution of dissolved As in Bangladesh and local rates of release to groundwater are not necessarily linked. Iron release during the incubations did not occur concurrently with As release, providing further confirmation thatthe two processes are not directly coupled. Small periodic additions of oxygen suppressed the release of As from sediments at all three depths, which supports the notion that anoxia is a prerequisite for accumulation of As in Bangladesh groundwater.  相似文献   

15.
This study documents the occurrence of highly chlorinated PCB congeners in stream sediment deposited over 100 years ago. Penta- to heptachlorinated congeners (> 80%) have been found at concentrations up to 78.8 ng/g (dw) in core samples of a small, rural tributary of Lake Ontario. Lower chlorinated congeners and other organochlorine compounds occur sporadically; 210Pb and 137Cs are lacking. The most plausible mechanism is accumulation of dissolved-phase PCBs in permeable sediments adjacent to the creek channel. The similarity between core and air samples collected in the drainage basin suggests derivation from a residual fraction of atmospherically derived PCB congeners.  相似文献   

16.
Polychlorinated biphenyl (PCB) congeners were analyzed in eight deep, dated sediment cores collected from the immediate upstream and downstream of DePere dam in Fox River, Wisconsin. The average time span of the cores is about 100 yr, except for one core (FR-9) which is influenced by mixing or covers a short time period (2 yr). The total PCB concentrations have a range of 0.2-6.8 ppm for the upstream and 0.3-17.6 ppm for the downstream cores. The PCB data obtained from the sampling were analyzed as upstream and downstream data, using a factor analysis (FA) model with nonnegative constraints to identify PCB sources and congener patterns. The factor loadings obtained from the FA model were interpreted in terms of the presence of possible environmental degradation mechanisms. In addition, a recently developed model, which is used to identify and quantify possible pathways of anaerobic dechlorination of PCBs in the sediments, was validated on the basis of in situ data from the literature, and then applied to the congener patterns obtained from the FA model. The major PCB source to the Fox River sediments is identified as Aroclor 1242, for both the upstream and the downstream sediments. Loss of di- and trichlorobiphenyls (e.g., 2-4, 25-2) from the sediments suggests desorption from the sediments. On the other hand, observation of elevated amounts of certain congeners such as 24-3 and 25-3 indicates the presence of anaerobic dechlorination activity. The anaerobic dechlorination model demonstrates significant similarities between the Aroclor 1242 profile altered according to dechlorination processes Q (upstream) and H' (downstream) and the dominant congener patterns obtained from the FA model.  相似文献   

17.
Four sediment cores were collected in fine-grained depositional areas of the southern basin of Lake Michigan. Spatial variations of aliphatic hydrocarbons in surficial sediments were consistent with a lakeward movement of riverine sediments in a series of resuspension-settling cycles in which an unresolved complex mixture (UCM) of hydrocarbons associated with dense sediments is deposited in nearshore areas, fine-grained sediments of terrestrial origin accumulate in the deep basin, and planktonic hydrocarbons are depleted by microbial degradation during transport to the deep basin. The rate of accumulation of the UCM (a marker of petroleum residues) in deep basin sediments has increased by more than an order of magnitude since 1880, from 60 microg m(-2) x a(-1) to approximately 960 microg m(-2) x a(-1) in 1980. Crude estimates of the atmospheric loading of the UCM (1100 microg m(-2) x a(-1)) indicate that accumulations in deep-basin sediments might be supported by atmospheric deposition. Agreement was poor between the atmospheric flux of the terrestrial n-alkanes (sigmaC25, C27, C29, C31) to the deep basin (3200 microg m(-2) x a(-1)) and the sediment accumulation rate (660 microg m(-2) x a(-1)). Understanding of atmospheric fluxes, estimated from the very few available data, would be improved by more frequent measurement of the levels of aliphatic hydrocarbons in air and precipitation and a better knowledge of the particle deposition velocities and precipitation scavenging coefficients.  相似文献   

18.
Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almadén District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almadén area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almadén are among the highestfound at Hg mines worldwide. Mine wastes from Almadén contain highly elevated Hg concentrations, ranging from 160 to 34,000 microg/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almadén mine is also contaminated, containing Hg as high as 13,000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 microg/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almadén mine and significant conversion to methyl-Hg in the surface environment.  相似文献   

19.
Strong sorption to soot- and charcoal-like material (collectively termed black carbon or BC) in soils and sediments is possibly the reason for recent observations of elevated geosorbent-water distribution ratios, slow desorption, limited uptake, and restricted bioremediation. We evaluated the role of environmental BC in the sorption of phenanthrene (PHE) to a polluted lake sediment from a Rhine River sedimentation area. Sorption isotherms were determined over a wide concentration range (0.0005-6 microg/ L) for the original sediment (with organic matter or OM, native sorbates, and BC), sediment from which we had stripped > 90% of the native sorbates (only OM and BC), and sediment combusted at 375 degrees C (only BC). The sorption isotherms of the original and stripped sediments were almost linear (Freundlich coefficient or n(F) > 0.9), whereas the isotherm of the BC remaining after the sediment combustion was highly nonlinear (n(F) = 0.54). At low concentrations (ng/L range), PHE sorption to BC in the combusted sediment was found to exceed the total PHE sorption in the original and stripped sediments. This implies that it may not be possible to use a BC-water sorption coefficient measured in combusted sediment to estimate total sorption to the original sediment. This "intrinsic" BC-water sorption coefficient after combustion was calculated to be 9 times larger than the "environmental" one in the untreated sediment. Competition between the added PHE and the native PAHs and/or OM may explain this difference. It appears that, at low aqueous PHE concentrations (ng/L and below), BC is the most important geosorbent constituent with respect to sorption. At higher concentrations (microg/L), BC sorption sites become saturated and BC sorption is overwhelmed by sorption to the other OM constituents. Because sorption is a central process affecting contaminant behavior and ecotoxicity, understanding this process can strongly contribute to risk assessment and fate modeling.  相似文献   

20.
Spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs) in sediments of the Pearl River Delta (PRD) and adjacent South China Sea (SCS) of southern China were examined. A total of 66 surface sediment samples were collected and analyzed to determine the concentrations of 10 PBDE congeners (BDE-28, -47, -66, -100, -99, -154, -153, -138, -183, and -209). The concentrations of BDE-209 and SigmaPBDEs (defined as the sum of all targeted PBDE congeners except for BDE-209) ranged from 0.4 to 7340 and from 0.04 to 94.7 ng/g, respectively. The SigmaPBDEs concentrations were mostly < 50 ng/g, within the range for riverine and coastal sediments around the world, whereas the BDE-209 concentrations at the most contaminated sites were at the high end of the worldwide figures. Congener compositions were dominated by BDE-209 (72.6 - 99.7%), with minor contributions from penta- and octa-BDEs. Slightly different PBDE compositions were observed among samples collected from different locations, attributable to possible decomposition of highly brominated congeners and/or redistribution between particles of various sizes during atmospheric or fluvial transportation. The PBDE patterns in the SCS and Pearl River Estuary sediments were similar to those in sediments of the Zhujiang and Dongjiang Rivers, reflecting the widespread influence from local inputs. Analyses of two short sediment cores collected from the Pearl River Estuary showed that concentrations of BDE-209 rapidly increased in the upper layers of both cores, coincident with the growth of the electronics manufacturing capacities in the PRD region. The major sources of PBDEs were probably waste discharges from the cities of Guangzhou, Dongguan, and Shenzhen, the three fastest growing urban centers in the PRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号