首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, highly-ordered TiO2 nanotube (TNT) electrodes fabricated by anodization at 20 V in 0.1 M F-based solution were annealed in O2, N2 and CO respectively. The surface properties of the TiO2 electrodes after annealing treatment by different gases were studied by means of photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the TNT electrodes were investigated by cyclic voltammetry, steady-state polarization and photocurrent response measurements. The results showed that Tin+ (n = 0-3) cations and oxygen vacancies existed in the TNT electrode after annealing in CO, leading to a very efficient electron transfer rate of 1.34 × 10− 3 cm/s. Steady-state polarization measurement and photocurrent response demonstrated that the electrode potential of oxygen evolution reaction (OER) reduced by 20% and the photocurrent response increased by 50% for CO-annealed TNT electrode compared with O2-annealed TNT electrode.  相似文献   

2.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

3.
Metal-insulator-metal (MIM) capacitors with excellent electrical properties have been fabricated using high-κ TaAlOx-based dielectrics. TaAlOx films having thickness of 11.5-26.0 nm, with equivalent oxide thickness (EOT) of ~ 2.3-5.3 nm were deposited on top of Au/SiO2 (180 nm)/Si (100) structures by radio frequency magnetron co-sputtering of Ta2O5 and Al2O3 targets. The surface chemical states of the as-deposited TaAlOx films were characterized by high-resolution X-ray photoelectron spectroscopy. The crystallinity of the TaAlOx films for various post-deposition annealing treatments was characterized by grazing incident X-ray diffraction, which reveals that an amorphous phase is still retained for rapid thermal annealing up to 500 °C. Besides a high capacitance density (~ 5.4 to 6.6 fF/μm2 at 1 kHz), a low value of voltage coefficients of capacitance and a stable temperature coefficient of capacitance have also been obtained in MIM capacitors with TaAlOx films. Degradation phenomenon of TaAlOx-based MIM capacitors under constant current stressing at 20 nA is found to be strongly dependent on dielectric thickness. It is shown that Al-incorporated Ta2O5 (TaAlOx) films with high band gap and good thermal stability, low leakage current and good voltage linearity make it one of the most promising candidates for metal-insulator-metal capacitor applications.  相似文献   

4.
Graphene oxide (GO) sheets prepared by chemical exfoliation were spread at the air-water interface and transferred to silicon substrates by Langmuir-Blodgett technique as closely spaced monolayers of 20-40 μm size. Hydrazine exposure followed by annealing in vacuum and argon ambient results in the formation of reduced graphene oxide (RGO) monolayers, without significantly affecting the overall morphology of the sheets. The monolayer character of both GO and RGO sheets was ascertained by atomic force microscopy. X-ray photoelectron spectroscopy supported by Fourier transform infrared spectroscopy revealed that the reduction process results in a significant decrease in oxygen functionalities, accompanied by a substantial decrease in the ratio of non-graphitic to graphitic (sp2 bonded) carbon in the monolayers from 1.2 to 0.35. Raman spectra of GO and RGO monolayers have shown that during the reduction process, the G-band shifts by 8-12 cm− 1 and the ratio of the intensities of D-band to G-band, I(D)/I(G) decreases from 1.3 ± 0.3 to 0.8 ± 0.2, which is in tune with the smaller non-graphitic carbon content of RGO monolayers. The significant decrease in I(D)/I(G) has been explained by assuming that substantial order is present in precursor GO monolayers as well as RGO monolayers obtained by solid state reduction.  相似文献   

5.
Nanostructured tungsten (W) and tungsten trioxide (WO3) films were prepared by glancing angle deposition using pulsed direct current magnetron sputtering at room temperature with continuous substrate rotation. The chemical compositions of the nanostructured films were characterized by X-ray photoelectron spectroscopy, and the film structures and morphologies were investigated using X-ray diffraction and high resolution scanning electron microscopy. Both as-deposited and air annealed tungsten trioxide films exhibit nanostructured morphologies with an extremely high surface area, which may potentially increase the sensitivity of chemiresistive WO3 gas sensors. Metallic W nanorods formed by sputtering in a pure Ar plasma at room temperature crystallized into a predominantly simple cubic β-phase with <100> texture although evidence was found for other random grain orientations near the film/substrate interface. Subsequent annealing at 500 °C in air transformed the nanorods into polycrystalline triclinic/monoclinic WO3 structure and the nanorod morphology was retained. Substoichiometric WO3 films grown in an Ar/O2 plasma at room temperature had an amorphous structure and also exhibited nanorod morphology. Post-deposition annealing at 500 °C in air induced crystallization to a polycrystalline triclinic/monoclinic WO3 phase and also caused a morphological change from nanorods into a nanoporous network.  相似文献   

6.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

7.
Plasma-polymer interactions have been investigated on the basis of hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS) for analysis of chemical bonding states in the surface nano-layers of polymethylmethacrylate (PMMA) films, which were exposed to argon plasmas sustained via RF inductive coupling with multiple low-inductance antenna units. The PMMA films were exposed to argon plasmas on a water-cooled substrate holder. Average ion energies bombarding onto PMMA films were varied in the range of 6-16 eV, which were evaluated as ion kinetic energies at the sheath edge to the ground potential using a mass-separated ion-energy analyzer. The etching of PMMA surface after Ar plasma exposure with an ion dose of 3.4 × 1018 ions/cm2 was measured to be insignificant (less than 20 nm). Surface roughness of PMMA slightly increased from 0.3 nm to 0.4 nm with increasing ion bombardment energy from 6 eV to 16 eV. HXPES was carried out together with conventional XPS to examine chemical bonding states of the PMMA surface in deeper regions (about 54 nm) with HXPES as compared to those observed in shallower regions (8 nm) with the conventional XPS.  相似文献   

8.
Interfacial reactions and electrical properties of RF sputter deposited HfTaOx high-k gate dielectric films on Si1 − xGex (x = 19%) are investigated. X-ray photoelectron spectroscopic analyses indicate an interfacial layer containing GeOx, Hf silicate, SiOx (layer of Hf-Si-Ge-O) formation during deposition of HfTaOx. No evidence of Ta-silicate or Ta incorporation was found at the interface. The crystallization temperature of HfTaOx film is found to increase significantly after annealing beyond 500 °C (for 5 min) along with the incorporation of Ta. HfTaOx films (with 18% Ta) remain amorphous up to about 500 °C anneal. Electrical characterization of post deposition annealed (in oxygen at 600 °C) samples showed; capacitance equivalent thickness of ~ 4.3-5.7 nm, hysteresis of 0.5-0.8 V, and interface state density = 1.2-3.8 × 1012 cm− 2 eV− 1. The valence and conduction band offsets were determined from X-ray photoelectron spectroscopy spectra after careful analyses of the experimental data and removal of binding energy shift induced by differential charging phenomena occurring during X-ray photoelectron spectroscopic measurements. The valence and conduction band offsets were found to be 2.45 ± 0.05 and 2.31 ± 0.05 eV, respectively, and a band gap of 5.8 ± 05 eV was found for annealed samples.  相似文献   

9.
The present study reports on the growth of thin TiO2 films onto Au(100) single crystals by Ti evaporation in a reactive O2 atmosphere at two different substrate temperatures: room temperature (RT) and 300 °C. The growth of the oxide films was monitored by means of X-ray photoemission spectroscopy, while the valence and conduction band electronic structure was investigated by UV and inverse photoemission spectroscopy, respectively.The TiO2 film grows epitaxially on the Au(100) substrate at 300 °C exhibiting the rutile (100) surface. The evolution of the Ti 2p lineshape with the oxide coverage shows the presence of reduced oxide species (characterized by Ti3 + ions) at the Au(100) interface. A crystalline and stoichiometric TiO2 oxide is produced at high substrate temperature, while growth at RT gives a measurable concentration of defects. Post growth annealing in ultra-high vacuum of the RT grown film increases this concentration, while subsequent annealing in O2 atmosphere restores the sample to the as-grown conditions.  相似文献   

10.
Ce-doped ZnO nanocomposite thin films with Ce/Zn ratio fixed at optimum value (10 at.%) have been prepared via sol-gel method at different annealing temperatures varied from 180 to 500 °C. The synthesized samples were characterized employing atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. According to AFM analysis, the average grain size increased from about 70 nm to 150 nm by increasing the annealing temperature from 300 to 500 °C. Moreover, based on the XPS data analysis, it was found that three major metal ions namely Ce3+, Ce4+, and Zn2+ coexist on the surface of the nanocomposite films. XPS data analysis also revealed that Ce3+ ion is oxidized to Ce4+ ion with increasing annealing temperature. Due to oxidation, the ratio of [Ce]/[Ce total] changed from 68.8 to 38.1% by increasing the annealing temperature from 180 to 500 °C. In addition, the Ce/Zn ratio increased from 0.21 to 0.42 when increasing the annealing temperature from 180 to 500 °C indicating migration of Ce ions toward the surface at higher temperatures. Finally, the XRD measurements determined that the ZnO thin films have a hexagonal wurtzite structure and CeO2 crystallites are formed at 500 °C in the Ce-doped ZnO nanocomposite thin films.  相似文献   

11.
Orange-red emissive LiSrBO3:Sm3+ phosphors were synthesized through the solid-state reaction method. Under UV radiation (221 nm) and low-voltage electron beam (2 keV, 12 mA/cm2) excitation, the Sm3+ doped LiSrBO3 phosphor shows emission corresponding to the characteristic 4G5/2-6H7/2 transitions of Sm3+ with the strongest emission at 601 nm. A high stability of cathodoluminescence (CL) emission during prolong electron bombardment with low-energy electrons was observed. Surface sensitive diagnostic tools such as Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to study the surface chemistry. AES results revealed modifications in the surface concentrations of Li, Sr, B, O and C on the surface of the LiSrBO3:Sm3+ phosphor as indicated by the changes in their Auger peak to peak heights (APPH) as a function of electron dose. Observed changes in the high resolution XPS spectra of the LiSrBO3:Sm3+ surface irradiated with the low energy electron beam provide evidence of compositional and structural changes as a result of the electron beam stimulated surface chemical reactions (ESSCRs). Additional SrO2 was identified by XPS on the phosphor surface after it received an electron dose of 300 C/cm2 together with the increase in the concentrations of chemical species containing the B-C-O bonding. The new surface chemical species formed during electron beam bombardment are possibly responsible for the stability of the CL in the LiSrBO3:Sm3+ phosphor.  相似文献   

12.
Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 1018 cm− 3, and Hall mobility of 22 cm2/Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications.  相似文献   

13.
Indole-3-carboxaldehyde (In3C) monomer was oxidized by electrochemical methods at the glassy carbon (GC) electrode in 0.05 M tetrabutylammonium tetrafluoroborate in acetonitrile, with the aim to prepare a modified electrode. Modification was performed using cyclic voltammetry (CV) scanning from 0.0 V to 2.0 V at a scan rate of 50 mV s− 1 for 10 cycles in 1 mM In3C monomer solution. The modified GC surface (In3C-GC) was characterized by CV response of potassium ferricyanide and ferrocene redox probes as well as by the electrochemical impedance spectroscopy. The modified surface was analyzed by reflection-absorption infrared spectroscopy and compared with the spectrum of the monomeric In3C. Elemental composition of the surface was determined by X-ray photoelectron spectroscopy. Contact angle measurements was also performed to check the changes in hydrophobic character of the bare GC and compared to that of In3C-GC surface. Thickness of the oligomeric/polymeric film was investigated by ellipsometric measurements and a surface confined polymerization mechanism was proposed.  相似文献   

14.
We investigated the chemical states of InTe thin film in the structural phase transition from the amorphous to the crystalline phase, using high-resolution X-ray photoelectron spectroscopy with synchrotron radiation. We confirmed the structural phase transition by transmission electron microscopy. Clean amorphous InTe (a-InTe) free of oxygen impurity was obtained after Ne+ ion sputtering at the ion beam energy of 1 kV for 1 h. Additionally, we obtained crystalline InTe (c-InTe) from clean a-InTe by annealing at 250 °C in an ultra-high vacuum. During the transition to the crystalline phase, the binding energy of the Te 4d core-level was unchanged, but the peak width was somewhat wider than in the amorphous phase. In the case of the In 4d core-level, the chemical shift was 0.1 eV at the higher binding energy between the amorphous and crystalline phases. The valence band maximum was shifted at the higher binding energy of 0.34 eV. We assumed that the Te atom was almost fixed and that the In atoms moved in the tight binding energy state to the center of the 4-Te atoms.  相似文献   

15.
Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 × 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 × 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 °C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 °C, before depleting the Si (111) surface at temperature 720 °C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (−1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 × 7 system can be utilized in fabrication of sensors used in night vision devices.  相似文献   

16.
The TiOx thin films were prepared by electron beam evaporation using TiO as the starting material. The effect of the annealing temperature on the optical and electrical properties was investigated. The spectra of X-ray photoelectron spectroscopy reveal that Ti in the films mainly exist in the forms of Ti2+ and Ti3+ below 400 °C 24 h annealing. The charge transfer between different titanium ion contribute greatly to the color, absorption, and electrical resistance of the films.  相似文献   

17.
Polymers have excellent bulk physical and chemical properties but usually poor surface properties. For wettability improvement plasma technology is one of the most promising techniques. Several studies about surface modifications of polyethylene terephthalate (PET) exposed to an oxygen plasma have been already carried out. In this work an analysis of the plasma phase by optical emission spectroscopy (OES) has been employed in order to establish a correlation with the surface effects induced by plasma exposition on PET chemical composition and wettability, investigated by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. The treatment has been carried out for a time of 60 s at a constant pressure (15 Pa) and at different process powers ranging from 20 to 200 W. As expected, the best performance has been obtained at a power of 200 W due to the larger presence of oxygen radicals (OI) with the assistance of ionic species (OII, O2+) which create dangling bonds on the substrate surface.  相似文献   

18.
Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm− 2 to 3 Wcm− 2 and N2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, Nt and doubly, Nd coordinated form. With increased presence of Nt, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 × 10− 6 Scm− 1 for optimum rf power and N2 flow conditions.  相似文献   

19.
The anomalous cobalt content in the electrodeposited nickel-cobalt (Ni-Co) alloy films significantly influenced by the current density was related to the variation of morphology and electron work function (EWF) of the films. The characteristics and EWF of Ni-Co films were investigated by scanning electron microscope with an attached energy dispersive X-ray spectrometer, X-ray diffraction, ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe technique, respectively. As the current density increased from 1 to 20 ampere per square decimeter (A/dm2), the Co atomic concentration (at.%) in Ni-Co greatly decreased from 22.5 at.% to 13.2 at.% correspondingly. The surface morphology of film obtained at low current density became smoother than that at high current density. Both UPS and Kelvin probe results showed the same trend of EWF variation which increased with increasing current density from 1 to 10 A/dm2 and kept nearly unchanged at 10-20 A/dm2. The smooth Ni-Co film with low EWF could be achieved at low current density. In comparison, Kelvin probe operated at atmosphere ambient could be a good candidate for EWF measurement because of the lower cost and easier operation than UPS at ultra high vacuum.  相似文献   

20.
We studied the effects of laser-spike annealing (LSA) on hafnium oxide high-k dielectrics using high power diode laser. The equivalent oxide thickness of HfO2 gate stacks annealed using a moderate laser power decreased noticeably as compared to as-grown films due to densification and crystallization of HfO2. Transmission electron microscope and X-ray photoelectron spectroscopy show that regrowth of interfacial oxide and silication of HfO2 layer are suppressed in case of LSA compared with rapid thermal annealing. Capacitance voltage hysteresis revealed stronger charge trapping/de-trapping behavior for LSA gate stacks as compared to rapid thermal annealed gate stack. However, bias-stress-induced flat band voltage shifts of LSA gate stacks were within acceptable levels, ? 30 mV, showing controllable threshold voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号