首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As demand for more power increases, compression ratios, and operating temperatures keep rising. High speeds combined with high temperatures make turbomachinery sealing applications even more challenging. In order to confirm sufficient service life material pairs should be tested under conditions similar to engine operating conditions. This study presents high temperature friction and wear characteristics of cobalt/nickel superalloys, Haynes 25 (51Co–10Ni–20Cr–15W), Haynes 188 (39Co–22Ni–22Cr–14W), and Haynes 214 (75Ni–16Cr–3Fe–0.5Mn) sheets when rubbed against Hastelloy X (47Ni–22Cr–18Fe–9Mo) pins. Tests are conducted at 25, 200, 400, and 540 °C with a validated custom design linear reciprocating tribometer. Sliding speed and sliding distance are 1 Hz and 1.2 km, respectively. Friction coefficients are calculated with friction force data acquired from a load cell. Wear coefficients are calculated through weight loss measurements. Results indicate that Haynes 25 (H25) has the lowest friction coefficients at all test temperatures. Above 400 °C, H25 and Haynes 188 (H188) exhibit the best wear resistance. Protective cobalt oxide layers are formed on the H25 and H188 at 540 °C in addition to nickel, chrome, and tungsten oxides. Although, it has better oxidation resistance, Haynes 214 has relatively higher wear rates than other tested materials especially at low temperatures. However, its wear performance improves beyond 200 °C.  相似文献   

2.
对发动机排气阀座无钴材料进行了研究.试验中对粉末冶金排气阀座提出了一种无钴烧结合金的设计方案,并采用正交试验法对材料配方进行优选.试验表明,采用优选配方制造的排气阀座试样具有较好的力学性能,特别是高温力学性能,可用来代替含钴烧结合金.  相似文献   

3.
The tribological behavior of polyphenylene sulfide (PPS) composites filled with micro and nano CuO particles in water-lubricated sliding condition were studied. Pin-on-disk sliding tests were performed against a steel counterface of surface roughness 0.09–0.11 μm. The lubrication regimes were established from friction data corresponding to various combinations of loads and sliding speeds. Later experiments were performed using the sliding speed of 0.5 m/s and contact pressure of 1.95 MPa, which corresponded to boundary lubrication regime. Micro CuO particles as the filler were effective in reducing the wear of PPS but nano CuO particles did not reduce wear. The steady state wear rate of PPS-30 vol.% micro CuO composite was about 10% of that of unfilled PPS and the coefficient of friction in this case was the lowest. The examination of the topography of worn pin surfaces of nano CuO-filled PPS by SEM revealed grooving features indicating three-body abrasion. The transfer films formed on the counterfaces during sliding were studied by optical microscopy and AFM. The wear behavior of the composites in water-lubricated sliding is explained using the characteristics of worn pin surfaces and transfer films on the counterface.  相似文献   

4.
The current-voltage characteristic, wear resistance, and friction surface roughness of baked model copper-graphite-ShKh15 steel composites are determined. It is shown that the composites containing under 10% and above 50% Cu produce a friction zone with low conductivity and wear resistance. The composites containing 15–20% Cu produce a friction zone with relatively high conductivity and wear resistance. The maximum parameters of the roughness (R a = 2.98 μm and R z = 24.5 μm) appear on the friction surface of the material containing 50% Cu.  相似文献   

5.
ABSTRACT

The paper aims to predict the cam and follower wear in direct acting valve train considering the effects of operating conditions. A numerical approach has been developed using frictional and lubrication analysis which is applied in the cam/follower wear study. Loading and motion parameters have been determined from dynamic and kinematic analysis whereas the wear profiles are obtained by linear wear relation. The wear of cam/follower is largely dependent on the lubrication film thickness, normal loading/contact pressure and sliding velocity. At low camshaft speeds, the wear depth of cam/follower pair is higher whereas it decreases at higher speeds due to relatively thicker oil film. It is an original research work and is strongly believed that it would help to further improve the performance of engine valve train and would also provide an opportunity to control the operating conditions promoting wear.  相似文献   

6.
Wear behavior of human tooth enamel against titanium alloy has been investigated under the lubrication of artificial saliva, using a reciprocating sliding wear test machine with a normal load of 20 N, a reciprocating amplitude of 500 μm, and a frequency of 2 Hz. Tests lasting up to 10, 100, 1000, 2000, and 5000 cycles were conducted, respectively. The worn surface of enamel after different cycles was analyzed by means of various microscopic examinations. The results showed that, a delamination mechanism occurred on the surface of enamel at the early stage of wear. The wear rapidly increased in depth with the number of cycles. As the wear proceeded, the surface of enamel was gradually covered with a wear particle layer, and the wear rate decreased. Finally the wear of enamel stayed stable. Microscopic examinations indicated that the wear of enamel was controlled by the mechanical removal of materials without obvious changes in the compositions and crystal structures of the enamel. The enamel rods were worn away after the inter-rod enamel.  相似文献   

7.
The influence of the pH in water lubricated sliding contacts was evaluated in terms of friction and wear. The experiments were carried out using a ball-on-disc setup. Si3N4 balls and Al2O3 discs were tested at temperature of (22±2) °C, sliding speed of (1.00±0.03) m/s and normal load of (54.25±0.17) N. Eight types of water with pHs varying from 3 to 12 were used as lubricant. The running-in period, friction coefficient and wear-volume were shown to be nearly independent of the initial pH values within the DLVO range (4≤pH≤10), since at these range the water׳s pH tends to the same value (7.6±0.3) during the test. Superlubricity could be reached with negligible wear by properly setting the electrochemical properties and operating conditions of the tribosystem.  相似文献   

8.
In this investigation, the influence of test speed and applied pressure values on the friction and wear behaviour of polyamide 66 (PA 66), polyoxymethylene (POM), ultrahigh molecular weight polyethylene (UHMWPE), 30% glass fibre reinforced polyphenylene-sulfide (PPS+30%GFR) and aliphatic polyketone (APK) polymers were studied. Friction and wear tests of PA 66, POM, UHMWPE, PPS+30%GFR and APK versus AISI D2 steel were carried out at dry condition on a pin-on-disc arrangement. Tribological tests were performed at room temperature at different pressures (0.35–1.05 MPa) and sliding speeds (0.5–2.0 m/s). The results showed that, for all polymers used in this investigation, the coefficient of friction decreases linearly with the increase in pressure. The specific wear rate for UHMWPE, PPS+30%GFR and APK were in the order of 10−5 mm3/N m, while the wear rate value for PA 66 was in the order of 10−6 mm3/N m. In addition to this, the wear rate value for POM was in the order of 10−3 mm3/N m. Furthermore, as the results of this investigation, the wear rate showed very little sensitivity to the applied pressures and test speed.  相似文献   

9.
Delamination wear of metal injection moulded 316L stainless steel   总被引:1,自引:0,他引:1  
C. Kanchanomai  B. Saengwichian  A. Manonukul 《Wear》2009,267(9-10):1665-1672
The wear behavior of metal injection moulded (MIM) stainless steels was studied using a pin-on-disc apparatus under dry sliding conditions. Pin specimens were MIM 316L stainless steel, while disc specimens were wrought 316L stainless steel. At low sliding speeds (0.2–0.6 m/s), the wear rates gradually decreased with increasing sliding speed, but then increased at high sliding speeds (0.6–2 m/s). The adhesive-induced delamination wear dominated at low sliding speeds, while abrasive-induced delamination wear dominated at high sliding speeds. At low sliding speeds, the surface densification occurred on the worn surface of pin specimens, hence no difference was found between the wear resistances of MIM pins containing 2% and 6% porosity. In contrast, the abrasive-induced delamination wear at high sliding speeds was enhanced by porosity; therefore the wear rates of MIM pins containing 6% porosity were higher than those of MIM pins containing 2% porosity.  相似文献   

10.
分析了冲击性交变载荷、高温、燃烧废气以及恶劣的润滑状况等工况对发动机气门-门座副磨损的影响,以2个相互配合的"联接体"模型计算发动机气门-门座副的磨损量,确定了磨损过程中两接触表面之间的压力分布、在气门-门座副使用期限内的极限线磨损量和气门、门座两摩擦表面上线磨损量的分布情况,可用于预测气门-门座副使用寿命。  相似文献   

11.
The friction and wear properties of the prevailing different solid lubricant coatings (Ion-plated Au, Ion-plated Ag and RF-sputtered PTFE on SUS440C stainless steel) used in the bearings of high-speed cryogenic-turbo-pumps of liquid rocket engines were experimentally evaluated in liquid nitrogen immersed conditions. Also the above experiments were carried out with two newly proposed solid lubricant coatings of sputter-ion-plated MoSTi and a new ion-plated Pb on SUS440C stainless steel. The friction coefficient and wear rates of the coatings of ion-plated Au, ion-plated Ag, RF-sputtered PTFE, the new ion-plated Pb and MoS2Ti-SIP (with coating thickness of 0.7±0.1 μm) on SUS440C steel against SUS440C stainless steel ball in liquid nitrogen were compared. Worn surfaces were examined microscopically with a microscope and a profilometer for understanding the mechanisms of friction and wear and transfer film lubrication in liquid nitrogen. It is found that the newly proposed solid lubricant coatings are showing promising results for their use in liquid nitrogen immersed conditions. The sputter-ion-plated MoSTi coating on SUS 440C steel shows a minimum value of friction coefficient (μ=0.015) and wear rate (wc=0.56 × 10−6 mm3/N m ) in liquid nitrogen.  相似文献   

12.
L. J. Yang 《Wear》2001,250(1-12):366-375
Turning operation was carried out, by using tungsten carbide inserts and a CNC lathe on low carbon and medium carbon steels, to determine the wear coefficient of tungsten carbide. The nominal (starting) workpiece diameter was 118 mm and the cutting speeds used were 70, 100, 130 and 160 m/min. The thrust and turning forces acting on the insert were measured from a force dynamometer. The turning distance was obtained from the diameter of the workpiece and its rotational speed. Calculations were made on the flank and crater wear volumes using an OMIS machine. The average wear coefficient of tungsten carbide was found to be 10×10−8. This value was obtained by averaging the wear coefficient values determined from the flank wear on turning both low and medium carbon steels; as well as from a statistical analysis of the wear coefficient values obtained between a turning temperature of 453 and 664°C. As compared with the average value of 106×10−8 obtained from the moving pin-on-disc test conducted earlier, it is lower by about one order of magnitude. It is suggested that the high turning temperature at the tool-chip interface may have lowered the hardness of the work materials during the turning operation to give the lower wear coefficient values.  相似文献   

13.
《Wear》2006,260(4-5):549-553
It was shown in a previous investigation that when an electric current is passed between two sliding surfaces in the presence of engine oils, the wear characteristics of two surfaces could be altered significantly, but not friction. The wear on the cathode surface is decreased while the wear on the anode surface increased. The difference in wear rate of surfaces with and without current is attributed to the modification of the elemental composition of surface films. In this investigation, the concept was extended to a machining operation where it is desirable to reduce wear of the cutting tool while increasing metal removal. Two types of experiments were conducted: (a) ball-on-disk test and (b) face milling test. It was observed in ball-on-disk tests that in the presence of a metalworking fluid, the wear of the anode surface decreased significantly while the wear of the cathode surface increased slightly. Similar observations were made in face milling tests where the milling insert wear was reduced when it was the anode and increased when the insert was the cathode. In addition to wear, vibration during milling was also reduced when the insert was the anode.  相似文献   

14.
To lower the friction coefficient and increase the wear resistance of epoxy, nanoparticles of zinc oxide and polytetrafluoroethylene (PTFE) were added in small volume percents to an epoxy matrix. Tribological testing of the samples in this study was completed on a linear reciprocating tribometer with a 250 N normal load and a 50.8 mm/s sliding speed. Several samples were made and tested following a modified Simplex Method optimization procedure in order to find a volume percent for optimized wear resistance and friction coefficient. The sample with the optimum wear rate consisted of 1 volume percent of zinc oxide nanoparticles and 14.5 volume percent of PTFE nanoparticles. It had a wear rate of k = 1.79 × 10−7 mm3/Nm; 400× more wear resistant than neat epoxy. The sample with the optimum friction coefficient consisted of 3.5 volume percent of zinc oxide nanoparticles and 14.5 volume percent of PTFE nanoparticles and had a friction coefficient of μ = 0.113, which is almost a 7× decrease in friction coefficient from neat epoxy.  相似文献   

15.
This paper proposes a new method for measuring grinding wheel contours using machine vision. The vision-aided measuring system comprises a CCD coupled with a telecentric lens, back lighting board and frame grabber. Measuring the image of the specimen with a grinded gap substitute directly captures the image of the actual grinding wheel. Using this method makes the 3 D of the topography of the grinding wheel into the 2 D of the contour of the grinding wheel. This method significantly simplifies grinding wheel wear measuring procedures compared with the traditional methods. Therefore, the presented paper provides a new method to improve efficiency and cost on measuring wear of the grinding wheel. The results show that this developed system achieves a repeatable accuracy of ±3 μm for the measurement of the grinding wheel contours.This paper has not been published elsewhere nor has it been submitted for publication elsewhere.  相似文献   

16.
气门座是内燃机中的一个重要零件,其工作环境恶劣,常因磨损过大引起失效,其磨损机理和材料一直是研究热点。介绍了气门座磨损机理及材料的研究现状,提出了气门座材料未来的研究和发展方向。  相似文献   

17.
Preventing valve train wear in automotive engines is one of the most important properties of an engine oil. However, the influence of engine oil additives on valve train wear has not been sufficiently clarified. In this investigation, the antiwear performance of additives (such as ashless dispersants, metallic detergents and zinc dithiophosphate - ZDTP) and the influence of the interaction of the additives were evaluated. Secondly, metallic detergents were considered. An overbased calcium sulphonate and an overbased phenate were found to have good anti-scuffing performance when evaluated in engine tests and in Falex wear tests. However, from the results of four-ball tests, these additives did not appear to have many extreme pressure properties. From surface analyses, it was determined that a calcium carbonate film was formed on the sliding surface of the Falex test piece, and this film provided good protection against wear. Finally, the interaction of ZDTP, succinimides and calcium detergents and their influence on valve train wear were studied. The decomosition temperature of ZDTP increased with certain additives. including the succinimide. As a result, scuffing was more prone, at temperatures below those increased temperatures. Also, changes in additive concentration on the sliding surface, due to competitive adsorption, altered the antiwear performance of the oil.  相似文献   

18.
The wear of grey cast iron in dry sliding conditions has been studied with the aims of (1) finding the influence of working conditions on the wear rate, and (2) determining the region of speed and load where low wear is accomplished. Grey cast iron with flake and nodular graphite was submitted to investigation using a pin-on-disc machine. The results indicate that the flake graphite cast iron is more suitable for applications at speeds greater than 4 m s−1 and lower loads, while nodular cast iron has greater wear resistance at lower speeds in the range of loads investigated - from 50 N cm−2 to 200 N cm−2  相似文献   

19.
《Wear》2006,260(9-10):1096-1103
This work presents a novel approach of sliding ball-on-disk wear tests where the disc material is investigated. Each part of the wear track on the disc is in discontinuous contact with the counterbody. The contact frequency at each part of the wear track on the disc with the counterbody is defined by the rotation frequency of the disc. The sliding speed is however a function of both the rotation frequency and wear track diameter. In this work, the effect of the contact frequency on friction and wear was investigated on carbon steel in discontinuous sliding contact with corundum balls. Various sliding speeds were used while maintaining the contact frequency at a fixed value, and various contact frequencies were applied at constant sliding speeds.The wear rate of the disk material is shown to depend not only on the usual wear test parameters, namely sliding speed and contact load, but also on contact frequency. Moreover, contact frequency is shown to be a key factor determining the wear mode even at constant sliding speed and load. At contact frequencies above 9 Hz, the dominant wear mechanism is oxidational wear, while at frequencies below 4 Hz the dominant wear mechanism is adhesive wear. This transition from adhesive to oxidational wear takes place together with a change in the type of debris generated and in the value of the coefficient of friction.The validity of the Garcia-Ramil-Celis model proposed earlier for discontinous sliding contact conditions, is demonstrated for the case of carbon steel disks sliding against a chemically inert counterbody.  相似文献   

20.
A computational model to predict polyethylene wear in modular total knee replacements was developed. The results from knee simulator wear tests were implemented with finite element simulations to identify the wear factors of Archard's wear law. The calculated wear factor for the articular and backside surface was 1.03±0.22×10−7 mm3/Nm and 2.43±0.52×10−10 mm3/Nm, respectively. The difference in wear factors was attributed to differences in wear mode and wear mechanisms between the articular (mainly two-body rolling/sliding wear mode with an abrasive/adhesive wear mechanism) and the backside surfaces (mainly fretting wear mode with an adhesive wear mechanism).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号