首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present herein a novel blind channel estimator for multicarrier (MC) systems in the presence of unmodeled narrowband interference. A generalized multichannel minimum variance principle is invoked to design an equalizing filterbank that preserves desired signal components and suppresses the overall interference. While a channel estimate may be obtained by directly maximizing the filterbank output power through multidimensional nonlinear searches, such an approach is computationally prohibitive and suffers local convergence. To overcome this difficulty, we derive an asymptotically (in SNR) tight lower bound of the filterbank output power and use it for channel estimation, which reduces the problem to a quadratic minimization. Numerical examples show that the proposed scheme compares favorably with a subspace blind channel estimator in the presence of unknown narrowband interference.  相似文献   

2.
This paper considers the problem of joint carrier offset and code timing estimation for code-division multiple-access (CDMA) systems. In contrast to existing schemes that require nonlinear iterative searches over the multidimensional parameter space, this paper proposes a blind estimator that provides an algebraic solution to the joint parameter estimation problem. By exploiting the subspace structure of the observed signal, the multiuser estimation is first decoupled into a series of single-user estimation problems, and then analytical tools of polynomial matrices are invoked for joint carrier and code timing estimation of a single user. The proposed estimator is near-far resistant. It can deal with frequency-selective and time-varying channels. The performance of the proposed scheme is examined analytically by a first-order perturbation analysis. The authors also derive an unconditional Crame/spl acute/r-Rao bound (CRB) that is conditioned neither on fading coefficients nor information symbols; as such, the CRB is considered a suitable lower bound for blind methods. Numerical examples are presented to evaluate and compare the proposed and a multidimensional search (MD-search)-based scheme.  相似文献   

3.
In this paper, we present a blind code-timing estimator for asynchronous code-division multiple-access (CDMA) systems that use bandlimited chip waveforms. The proposed estimator first converts the received signal to the frequency domain, followed by a frequency deconvolution to remove the convolving chip waveform, and then calculates the code-timing estimate from the output of a narrowband filter with a sweeping center frequency, which is designed to suppress the overall interference in the frequency domain. The proposed estimator is near-far resistant, and can deal with time- and frequency-selective channel fading. It uses only the spreading code of the desired user, and can be adaptively implemented for both code acquisition and tracking. We also derive an unconditional Crame/spl acute/r-Rao bound (CRB) that is not conditioned on the fading coefficients or the information symbols. It is a more suitable lower bound than a conditional CRB for blind code-timing estimators which do not assume knowledge of the channel or information symbols. We present numerical examples to evaluate and compare the proposed and several other code-timing estimators for bandlimited CDMA systems.  相似文献   

4.
In this paper, a blind RAKE receiver with robust multiuser access interference cancellation is presented for frequency-selective Rayleigh fading channels. In contrast to a conventional receiver, here, only knowledge of the spreading code and rough timing of the desired user is required. By investigating the code space of the multipath signals and the data vector space, a RAKE filtering vector is developed to extract the desired data from all the paths of the desired user. Our proposed technique not only exploits the characteristics of multipath propagation but also the characteristics of timing offsets that may occur in the receiver, to facilitate the application of a blind linear filter-optimization technique for robust interference suppression. Based on the RAKE filtering vector, interference rejection is implemented by using the auxiliary-vector (AV) technique. Our approach, however, effectively overcomes the sensitivity of the original AV method to multipath propagation and timing offsets. To mitigate the signal cancellation at relatively high signal-to-interference and noise ratios (SINR) resulting from the estimation errors of the RAKE filtering vector, robust strategies are introduced in addition to the linear filter optimization. Simulation results are presented to show the effectiveness of the proposed techniques.  相似文献   

5.
We present an efficient blind algorithm for estimating the code timing of a desired user in an asynchronous direct-sequence code-division multiple-access (DS/CDMA) system over frequency-nonselective-fading channels. The proposed algorithm acquires the code timing explicitly and results in a near-far resistant minimum mean-squared error (MMSE) demodulation without requiring the knowledge of the timing information, amplitudes, and transmitted symbols of all transmissions. The only required knowledge is the information of the signature sequence used by the desired transmission. Several computer simulations are done for additive white Gaussian channels, Rayleigh fading channels, and two-ray Rayleigh fading multipath channels, respectively. Numerical results show that the new algorithm is near-far resistant to the multiple-access interference (MAI) in the DS/CDMA system  相似文献   

6.
In this paper, we present a novel joint algorithm to estimate the symbol timing and carrier frequency offsets of wireless orthogonal frequency division multiplexing (OFDM) signals. To jointly estimate synchronization parameters using the maximum likelihood (ML) criterion, researchers have derived conventional models only from additive white Gaussian noise (AWGN) or single-path fading channels. We develop a general ML estimation algorithm that can accurately calculate symbol timing and carrier frequency offsets over a fast time-varying multipath channel. To reduce overall estimation complexity, the proposed scheme consists of two estimation stages: coarse and fine synchronizations. A low complexity coarse synchronization based on the least-squares (LS) method can rapidly estimate the rough symbol timing and carrier frequency offsets over a fast time-varying multipath channel. The subsequent ML fine synchronization can then obtain accurate final results based on the previous coarse synchronization. Simulations demonstrate that the coarse-to-fine method provides a good tradeoff between estimation accuracy and computational complexity.  相似文献   

7.
Orthogonal Frequency Division Multiplexing (OFDM) systems are more sensitive to timing synchronization than single carrier systems. This paper presents a fine timing synchronization scheme which utilizes the channel impulse response (CIR) estimated from frequency-domain samples at OFDM receivers. A Maximum Likelihood Estimate (MLE) of timing offset is derived based on the probability distribution of the estimated CIR under time-varying multipath fading. The ML timing scheme is further developed for both integer precision and real-valued precision implementations. In the real-valued timing precision case, a delay locked loop (DLL) structure is devised as an effective way to implement the MLE. Both analysis and simulations of the proposed MLE showed significant improvement over existing schemes under time-varying multipath fading channels.   相似文献   

8.
The problem of blind adaptive joint multiuser detection and equalization in direct-sequence code division multiple access (DS/CDMA) systems operating over fading dispersive channels is considered. A blind and code-aided detection algorithm is proposed, i.e., the procedure requires knowledge of neither the interfering users' parameters (spreading codes, timing offsets, and propagation channels), nor the timing and channel impulse response of the user of interest but only of its spreading code. The proposed structure is a two-stage one: the first stage is aimed at suppressing the multiuser interference, whereas the second-stage performs channel estimation and data detection. Special attention is paid to theoretical issues concerning the design of the interference blocking stage and, in particular, to the development of general conditions to prevent signal cancellation under vanishingly small noise. A statistical analysis of the proposed system is also presented, showing that it incurs a very limited loss with respect to the nonblind minimum mean square error detector, outperforms other previously known blind systems, and is near-far resistant. A major advantage of the new structure is that it admits an adaptive implementation with quadratic (in the processing gain) computational complexity. This adaptive algorithm, which couples a recursive-least-squares estimation of the blocking matrix and subspace tracking techniques, achieves effective steady-state performance.  相似文献   

9.
In direct-sequence code-division multiple access, a code synchronization must take place before the multiuser detector. As the initial synchronization stage, a code acquisition scheme is used to estimate the relative timing phase for the desired transmission within one chip interval. In this paper, a blind code acquisition scheme using adaptive linear filtering based on a linearly constrained constant modulus algorithm (CMA) is proposed. The uncertainty of a desired user's delay is initially discretized and translated into a number of hypotheses. The lock convergence property of CMA is exploited, where the filter at the steady state can lock onto the desired user while nulling all other interfering users (i.e., a decorrelator). For each delay hypothesis, the filter is initialized as the corresponding shifted spreading sequence of the desired user. It is shown that lock convergence always occurs for the correct hypothesis, while all incorrect hypotheses will be hovered around some saddle regions, given sufficiently small step sizes. Then, the correct hypothesis is the one which has the converged filter to yield the maximum lock onto the desired user, or a maximum output energy  相似文献   

10.
在Takahashi提出的盲同步算法的基础上,提出了一种正交频分复用(OFDM)多符号联合的差分盲同步算法。同Takahashi的算法一样,该算法利用OFDM符号的循环前缀内不被多径时延扩展所影响的那部分码元提取定时信息,但是为了避免电力线信道中随机的脉冲噪声对符号同步产生的影响,在每个定时时刻,取差值的前后移动平均,并采用多个OFDM符号的联合,以增强同步效果。仿真结果表明,在第一径为最强径或是非最强径的电力线多径衰落信道中,该算法取得了更好的符号同步性能。  相似文献   

11.
A new spreading scheme and an accompanying blind adaptive receiver structure are proposed for direct-sequence spread-spectrum multiple-access communications in a slowly-varying, frequency-selective fading channel. Each user's spreading sequence is given by the Kronecker product of a long-period pseudonoise (PN) sequence, which is accurately modeled by a random sequence, and a short-length deterministic signature code. This spreading scheme bridges the gap between pure PN spreading and pure short-code spreading schemes. It is shown that with this spreading scheme, the channel response to the desired signal component is easily estimated without relying on the spectral decomposition of the signal correlation matrix. With the estimate of the channel response, the receiver suppresses interference based on the maximum signal-to-interference ratio criterion. The blind adaptive receiver requires only coarse timing information and a priori knowledge of the desired user's PN sequence for adaptation. Numerical results show that the adaptive receiver significantly suppresses interference by successfully estimating the channel response and the interference statistics with a low computational complexity. An extension to spatio-temporal processing using an array antenna is also discussed  相似文献   

12.
A computationally efficient initial synchronization technique is introduced in cellular orthogonal frequency division multiplexing downlink systems, which includes symbol timing estimation, frequency offset estimation, frame synchronization, and cell search. Novel preamble and pilot structures are proposed and a simple three-step synchronization scheme is developed based on a variety of practical conditions such as low computational complexity, time-varying frequency selective fading, limited preamble length, low peak-to-average-power ratio, and noncoherent synchronization with no channel estimation. The proposed three-step synchronization is sequentially described as (1) joint timing and frequency synchronization, (2) frame synchronization and preamble pattern identification (ID), and (3) pilot group ID. Simulation results show that the proposed technique nicely works even at low signal-to-interference-and-noise ratio regions.  相似文献   

13.
Block transmission has recently been considered as an alternative to the conventional continuous transmission technique. In particular, block transmission techniques with zero padding (ZP) and cyclic prefix (CP) are becoming attractive procedures for their ability to eliminate both intersymbol interference (ISI) and interblock interference (IBI). In this paper, we present a unified approach to blind-channel estimation and interference suppression for block transmission using ZP or CP in both single-carrier (SC) and multicarrier (MC) systems. Our approach uses a generalized multichannel minimum variance principle to design an equalizing filterbank. The channel estimate is then obtained from an asymptotically tight lower bound of the filterbank output power. Through an asymptotic analysis of the subspace of the received signal, we determine an upper bound for the number of interfering tones that can be handled by the proposed schemes. As a performance measure, we derive an unconditional CramÉr–Rao bound (CRB) that, similar to the proposed blind channel estimators, does not assume knowledge of the transmitted information symbols. Numerical examples show that the proposed schemes approach the CRB as the signal-to-noise ratio (SNR) increases. Additionally, they exhibit low sensitivity to unknown narrowband interference and favorably compare with subspace blind-channel estimators.   相似文献   

14.
Optimal finite impulse response (FIR) transmit and receive filterbanks are derived for block-based data transmissions over frequency-selective additive Gaussian noise (AGN) channels by maximizing mutual information subject to a fixed transmit-power constraint. Both FIR and pole-zero channels are considered. The inherent flexibility of the proposed transceivers is exploited to derive, as special cases, zero-forcing (ZF) and minimum mean-square error receive filterbanks. The transmit filterbank converts transmission over a frequency-selective fading channel, affected by additive colored noise, into a set of independent flat fading subchannels with uncorrelated noise samples. Two loading algorithms are also developed to distribute transmit power and number of bits across the usable subchannels, while adhering to an upper bound on the bit error rate (BER). Reduction of the signal-to-noise ratio (SNR) margin required to satisfy the prescribed BER is achieved by coding each subchannel's bit stream. The potential of the proposed transceivers is illustrated and compared to discrete multitone (DMT) with simulated examples  相似文献   

15.
In cooperative communication networks, the performance of distributed space-time code will be severely degraded if the timing synchronization among relay nodes is not perfect. In this letter, we propose a systematic construction of the so called distributed linear convolutional space-time code (DLCSTC) for multipath fading channels that does not require the synchronization assumption. We derive sufficient conditions on the code design such that the full cooperative and multipath diversities can be achieved under the minimum memory length constraint. Then we design DLCSTCs that both have the traceorthonormality property and achieve the full diversity. We show that the proposed codes can also achieve the full diversity for asynchronous cooperative communications with ZF, MMSE and MMSE-DFE receivers under frequency-selective channels. Finally, various numerical examples are provided to corroborate the analytical studies.  相似文献   

16.
We compare single user digital multi-carrier spread spectrum (MC-SS) modulation with direct sequence (DS) SS (with a modified implementation) in the presence of narrowband interference (NBI) and multipath fading. We derive closed-form expressions for the symbol error probability for both the linear MMSE receiver as well as the conventional matched-filter receiver under different scenarios: additive white Gaussian noise (AWGN) channel with NBI, multipath channel with or without NBI. We show that DS-SS can achieve the same performance as MC-SS if the spreading code is carefully designed to have perfect periodic autocorrelation function (PACF). On the other hand, MC-SS is more robust to narrowband interference and multipath fading than is DS-SS with the widely used spreading codes that do not possess perfect PACE. Our analysis reveals that the performance improvement of MC-SS is precisely due to the implicit construction of an equivalent spreading code having nonconstant amplitude but possessing perfect periodic autocorrelation  相似文献   

17.
1 Introduction OFDMisaneffectivetransmissionschemetocopewithmultipathfading[1] .Byinsertingaguardintervalbetweensymbolsblockscalledcyclicprefix ,theInterSymbolInterference (ISI)canbemitigated .OFDMwasadoptedasthemodulationschemeforaDigitalAu dioBroadcasting (DAB)system[2 ] andisalsoproposedastheterrestrialHDTVtransportinEurope[3] . SymboltimingoffsetsinOFDMreceiversnotonlyin troduceISIbutalsocauselinearphaserotationsofthesignalconstellationofthereceiverFastFourierTrans form (F…  相似文献   

18.
Adaptive receiver structures for asynchronous CDMA systems   总被引:10,自引:0,他引:10  
Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise  相似文献   

19.
Previously, we proposed a differential space-code modulation (DSCM) scheme that integrates the strength of differential space-time coding and spreading to achieve interference suppression and resistance to time-varying channel fading in single-user environments. In this paper, we consider the problem of multiuser receiver design for code-division multiple-access (CDMA) systems that utilize DSCM for transmission. In particular, we propose two differential receivers for such systems. These differential receivers do not require the channel state information (CSI) for detection and, still, are resistant to multiuser interference (MUI) and time-varying channel fading. We also propose a coherent receiver that requires only the CSI of the desired user for detection. The coherent receiver yields improved performance over the differential receivers when reliable channel estimates are available (e.g., in slowly fading channels). The proposed differential/coherent receivers are decorrelative schemes that decouple the detection of different users. Both long and short spreading codes can be employed in these schemes. Numerical examples are presented to demonstrate the effectiveness of the proposed receivers.  相似文献   

20.
We consider the structure and performance of a multistage decoding scheme for an internally bandwidth efficient convolutionally coded Poisson fiber-optic code division multiple access (CDMA) communication system. The decoder is implemented electronically in several stages in which in each stage, the interfering users' coded bit decisions obtained in the previous stage is applied for computing the likelihood of the coded symbols of the desired user. The first stage is a soft-input Viterbi decoder for the internally coded scheme, in which the soft-input coded symbol likelihood values are computed by considering the multiuser interference as a noise signal. The likelihood of coded symbol computed in each stage is then entered into the convolutional decoder for the next bit decisions. The convolutional codes that are used for demonstrating the performance of the multistage decoder are super orthogonal codes (SOCs). We derive the bit error rates (BERs) of the proposed decoder for internally coded Poisson fiber-optic CDMA systems using optical orthogonal codes (OOCs) along with both ON-OFF keying (OOK) and binary pulse position modulation (BPPM) schemes. Our numerical results indicate that the proposed decoding scheme substantially outperforms the single-stage soft-input Viterbi decoder. We also derive the upper bound on the probability of error of a decoder for the known interference case, which is the ultimate performance of a multiuser decoder, and compare the result with that of the soft-input Viterbi decoder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号