首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to collection efficiency, pressure drop is the most important characteristic of a filter medium. While there are numerous analytical expressions available for predicting the pressure drop of the filters made up of fibers with a unimodal fiber diameter distribution, there are not enough studies dedicated to filters composed of fibers with a bimodal (or multimodal) fiber diameter distribution. In this work, the pressure drop per unit thickness of filters made of bimodal fiber diameters is calculated by solving the Navier-Stokes equations in a series of 2-D geometries. These results are used to find the unimodal equivalent diameters of each bimodal filter that could be used in the existing expressions for calculating pressure drop. In agreement with the work of Brown and Thorpe [Brown, R.C., Thorpe, A., Glass-fiber filters with bimodal fiber size distributions. Powder Technology 118 (2001) 3-9.], it was found that the area-weighted averaging of the fiber diameters in a bimodal filter provides a relatively good estimation of its equivalent unimodal fiber diameter. We, however, noticed that in such an averaging the error percentage in the pressure drop prediction is sensitive to the fiber diameter ratios as well as the fraction of each fiber diameter in the bimodal filter. We, therefore, obtained a correction factor for the estimation of the unimodal equivalent diameters as a function of fiber diameter ratio and their number fractions.  相似文献   

2.
3-D simulation of particle filtration in electrospun nanofibrous filters   总被引:2,自引:0,他引:2  
Virtual 3-D geometries resembling the internal microstructure of electrospun fibrous materials are generated in this work to simulate the pressure drop and collection efficiency of nanofibrous media when challenged with aerosol particles in the size range of 25 to 1000 nm. In particular, we solved the air flow field in the void space between the fibers in a series of 3-D fibrous geometries with a fiber diameter in the range of 100 to 1000 nm and a Solid Volume Fraction (SVF) in the range of 2.5 to 7.5%, using the Fluent CFD code, and simulated the flow of large and fine particles through these media using Lagrangian and Eulerian methods, respectively. Particle collection due to interception and Brownian diffusion, as well as the slip effect at the surface of nanofibers, has been incorporated in the CFD calculations by developing customized C++ subroutines that run in the Fluent environment. Particle collection efficiency and pressure drop of the above fibrous media are calculated and compared with analytical/empirical results from the literature. The numerical simulations presented here are believed to be the most complete and realistic filter modeling published to date. Our simulation technique, unlike previous studies based on oversimplified 2-D geometries, does not need any empirical correction factors, and can be used to directly simulate pressure drop and efficiency of any fibrous media.  相似文献   

3.
This work is conducted to better our understanding of the influence of fibers’ in-plane and through-plane orientations on pressure drop and collection efficiency of fibrous media. The Stokes flow equations are numerically solved in virtual, 3-D, fibrous geometries with varying in-plane and/or through-plane orientations. Pressure drop and aerosol collection efficiency characteristics of such media are calculated and compared with available studies from the literature. Our results indicate that pressure drop and submicron particle capture efficiency of common fibrous filters with a fiber diameter of about 10 μm are independent of the in-plane orientation of the fibers, but decrease with increasing the fibers’ through-plane orientation. More interestingly, it was found that filters with higher through-plane fiber orientations have a higher figure of merit if challenged with nanoparticles. The figure of merit of these media, however, decreases as the particle size increases, reversing the effect of fibers’ through-plane orientation. It was also shown that when the diameter of the particles is comparable to that of the fibers, collection efficiency increases with decreasing the fibers’ in-plane orientation, while the pressure drop remains almost unchanged. This indicates that decreasing the fibers’ in-plane orientation increased the figure of merit of media made of nanofibers.  相似文献   

4.
The performance of electrostatically charged blown microfiber filter media was characterized for high-volume sampling applications. Pressure drop and aerosol collection efficiency were measured at air pressures of 55.2 and 88.7 kilopascals (kPa) and filter face velocities ranging from 2.5 to 11.25 meters per second (m/s). Particle penetration was significant for particles above 0.5 micrometers (μm) in aerodynamic diameter where the onset of particle rebound was observed as low as 200 nanometers (nm). Particle retention was enhanced by treating filters in an aqueous solution of glycerol. Adding this retention agent eliminated electrostatic capture mechanisms but mitigated inertial rebound. Untreated filters had higher nanoparticle collection efficiencies at lower filter face velocities where electrostatic capture was still significant. At higher filter face velocities, nanoparticle collection efficiencies were higher for treated filters where inertial capture was dominant and particle rebound was mitigated. Significant improvements to microparticle collection efficiency were observed for treated filters at all air flow conditions. At high air pressure, filter efficiency was greater than 95% for particles less than 5 μm. At low air pressure, performance enhancements were not as significant since air velocities were significantly higher through the fiber mat. Measured single fiber efficiencies were normalized by the theoretical single fiber efficiency to calculate adhesion probability. The small fiber diameter (1.77 μm) of this particular filter gave large Stokes numbers and interception parameters forcing the single fiber efficiency to its maximum theoretical value. The adhesion probability was plotted as a function of the ratio of Stokes and interception parameter similar to the works of others. Single fiber efficiencies for inertial nanoparticle collection were compared to existing theories and correlations.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
Fibrous filters are highly efficient in removing micrometer particles, but their performance in the nanometer particle range is still little known. The aim of this study was to evaluate pressure drop and collection efficiency during nanoparticles cake formation using commercial fibrous filters. The filter media used were High Efficiency Particulate Air (HEPA) and polyester filters. The aerosols were generated by a commercial inhaler using a 5 g/L solution of NaCl and the particles produced were in the size range from 6 to 800 nm, with a peak at around 40 nm. A superficial velocity (vs) of 0.06 m/s was employed. During the filtration, the maximum pressure drop established was ?P = ?Pf +980Pa, where ?Pf is the initial pressure drop of the filter. The collection efficiency was determined for a clean filter and for intermediate pressure drops. The filtration curves obtained showed that the HEPA filter provided greater surface filtration, compared to the polyester filter. Comparison of the collection efficiencies for clean filters revealed that the HEPA filter was highly efficient, even in the absence of cake, while the polyester filter showed initial collection efficiencies of between 20 and 40% for particles in the size range from 100 nm to 1000 nm. However, after formation of the filter cake, the collection efficiencies of both filters were almost 100% during the final stage of filtration. This shows that the fibrous filter can be applied in several industrial processes with highly efficient nanoparticle separation, after the formation of a thin layer cake filtration.  相似文献   

6.
Polyacrylonitrile (PAN) fibers with mean diameters in 270-400 nm range were prepared by electrospinning for use as a filter media. Compared to commercial filters made of polyolefin and glass, the fibers of electrospun filters were more uniform in diameter. The performance of electrospun filters was evaluated by measuring the penetration of monodisperse NaCl nanoparticles (below 80 nm in size) through the filters. It was found that electrospun filters could be made which had nanoparticle penetration values comparable to commercial filters but with substantially less filter mass. The penetration of nanoparticles through the electrospun filter media could be reduced by increasing the filter thickness, which is controlled by the collection time during the electrospinning process. Nanoparticle collection by electrostatic forces was found to be negligible for electrospun filters. Filter quality factors and single fiber collection efficiencies were found to be independent of filter thickness for electrospun filters, and the penetration of nanoparticles through electrospun filters was in better agreement with theoretical predictions than was the measured penetration through a commercial filter. This study shows that electrospinning is a promising technology for the production of high performance nanoparticle filters.  相似文献   

7.
Conventional, mechanical fibrous filters made of microfibers exhibit a local minimum of fractional collection efficiency in the aerosol particle size-range between 100 and 500 nm, which is called the most penetrating particle size (MPPS). Simple theoretical calculations predict that this efficiency may be significantly increased using nanofibrous media. The main objective of this paper is an experimental verification of these expectations and simultaneously checking whether this anticipated gain in the filtration efficiency is not overpaid with an excessive pressure drop. For this purpose we developed a modified melt-blown technology, which allowed us to produce filters composed of micrometer as well as nanometer sized fibers. One conventional microfibrous filter and five nanofibrous filters were examined. The complete structural characteristics, pressure drop and efficiency of removal of aerosol particles with diameters 10-500 nm were determined for all media. The results of the experiments confirmed that using nanofibrous filters a significant growth of filtration efficiency for the MPPS range can be achieved and the pressure drop rises moderately. Simultaneously, we noticed a shift of the MPPS towards smaller particles. Consequently, the quality factor for bilayer systems composed of a microfibrous support and a nanofibrous facial layer was considerably higher than this one for a conventional microfibrous filter alone. Additionally, it was found that utilization of many-layer nanofibrous filters combined with a single microfibrous backing layer is even more profitable from the quality factor standpoint. Comparing experimental results with theoretical calculations based on the single-fiber theory we concluded that for microfibrous filters a fairly good agreement can be obtained if the resistance-equivalent fiber diameter is used in calculations instead of the mean count diameter determined from the SEM images analysis; in the latter case, filtration efficiency computed theoretically is slightly overestimated. This is even more evident for nanofibrous media, suggesting that in such case a structural filter inhomogeneity has a strong influence on the filter efficiency and its resistance and one should strive for minimization of this effect manufacturing nanofibrous filters as homogeneous as possible. We can finally conclude that fibrous filters containing nanofibers, which are produced using the melt-blown technique, are very promising and economic tools to enhance filtration of the most penetrating aerosol particles.  相似文献   

8.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

9.
Electrospinning is a fabrication process that uses an electric field to make polymer nanofibers. Nanofibers have a large specific surface area and a small pore size; these are good properties for filtration applications. In this paper, the filtration characteristics of a Nylon 6 nanofilter made by electrospun nanofibers are tested as a function of the fiber diameter. Nanofilter media with diameters in the range of 100–730 nm can be produced in optimized conditions. The pressure drop of a Nylon 6 nanofilter linearly increases with the increasing face velocity. An electrospun Nylon 6 filter (mean fiber diameter: 100 nm) shows a much lower pressure drop performance relative to the commercial HEPA filter media when the filtration efficiency of the Nylon 6 nanofilter and the HEPA filter are over 99.98% with test particles of 0.02–1.0 μm in diameter. The pressure drop at 5 cm/s of the face velocity is measured as 27 mmAq for the Nylon 6 nanofilter media, and 37.1 mmAq for the HEPA filter media. The particle size with minimum efficiency decreases with the decreasing fiber diameter. And the minimum efficiency becomes greater as the fiber diameter is decreased.  相似文献   

10.
The flat surface of Nuclepore filters is suitable for observing collected particles with a scanning electron microscope (SEM). However, experimental data on surface-collection efficiency are limited because surface-collection efficiencies cannot be measured directly using aerosol measuring instruments. In this study, the surface-collection efficiencies of Nuclepore filters were determined by establishing the ratio of the number of particles deposited on the surface of the filter visually counted with an SEM to the number of inflow particles counted by a condensation particle counter, using monodispersed polystyrene latex particles (30–800 nm) and silver particles (15–30 nm). Because Nuclepore filters with smaller pore sizes would be expected to produce higher minimum surface-collection efficiency and a higher pressure-drop, 0.08 and 0.2 µm Nuclepore filters were chosen as the test filters in view of both collection efficiency and pressure drop. The results showed that the minimum surface-collection efficiencies of the 0.08 µm pores at face velocities of 1.9 and 8.4 cm·s?1 were approximately 0.6 and 0.7, respectively, and those of the 0.2 µm pores at face velocities of 1.5 and 8.6 cm·s?1 were approximately 0.8 and 0.6, respectively. Because the pressure drop of the 0.2 µm pore filter was lower than that of the 0.08 µm pore filter under the same flow-rate conditions, the 0.2 µm pore filter would be more suitable considering the pressure drop and collection efficiency. The obtained surface collection efficiencies were quantitatively inconsistent with theoretical surface-collection efficiencies calculated using conventional theoretical models developed to determine the collection efficiency of filters with larger pores.

© 2016 American Association for Aerosol Research  相似文献   

11.
This study investigates the use of a vacuum collection system (VCS) in the forcespinning formation of polyacrylonitrile fibers. The surface of different filter media (substrates) has been modified for air filtration applications. The evaluation was made of the effects of collection time (60 and 180 s), VCS power (25, 50, 75, and 100%), needle size (30G ½″ and 26G ½″), and rotation speed (4,000 and 6,000 rpm). The main results were that higher substrate permeability constant in association with VCS led to a decrease in the porosity of the fiber layer, an increase of the VCS power led to increases in the collection efficiency and pressure drop, while the superficial porosity and fiber diameter decreased, and fiber collection time analysis showed that the longer collection time led to higher fiber diameter and smaller pressure drop. In all cases, the addition of the fiber layer caused increases in the pressure drop and collection efficiency, together with decreased permeability constant. Although the collection efficiency values for nanoparticles are not as expressive, these results are encouraging and indicate that VCS can be used to improve the performance of the filter medium.  相似文献   

12.

Modeling commercial filter media using classical theories results in incorrect filter pressure drop and efficiencies and this is attributed to media inhomogeneity. The use of an arbitrary inhomogeneity factor is seen to be inadequate in accounting for the effect of operating conditions on the performance of inhomogeneous filter media. A simplistic theoretical modeling approach is described here to account for the variations in filter packing densities and to estimate their effect on the media particle capture characteristics. The theoretical modeling results are used in obtaining an equivalent filter packing density distribution from media local efficiency measurements. Considering this variation in the theoretical models is seen to result in better prediction of media performance over a wide range of operating conditions. The observed deviation of experimental efficiencies from the theory at smaller Peclet numbers can be explained from the results of the theoretical analysis.  相似文献   

13.
The goal of this study was to optimize fibrous filter media by increasing the dust holding capacity (DHC) while maintaining the β ratio and initial pressure drop of the filter media. The key was the use of microstructure models to optimize the filter media. The microstructure of three different variations of a filter media for oil filtration was modeled by using the FiberGeo module of the GeoDict® software package. It was found that by optimizing the fiber volume distribution over the height of the filter media, higher DHC values could be achieved while keeping the pressure drop considerably low. This confirms the hypothesis that the macroscopic properties of the filter element can be improved by modifying the microstructure of the filter media.  相似文献   

14.
The purpose of this study was to improve the efficiency of filters used in asbestos control systems, such as those used at asbestos removal sites. We evaluated the melt-blown (MB) filter media for their asbestos removal efficiencies. The filter grades were based on the ISO and European standards (EN 1822) of E12 (≥99.5% collection efficiency) and H13 (≥99.95% collection efficiency) with a size of <0.2?μm asbestos diameter. Based on test chamber experiments, the asbestos removal efficiency of the grade H13?MB filter (99.974%) was higher than that of the E12 grade MB filter (97.120%). In addition, the lowest level of pressure drop was observed in the case with a 3.8?mm pitch interval. The concentrations of airborne asbestos based on phase contrast microscopy in the sites with asbestos concentrations presenting high risks before turning on the asbestos control system was 0.038 fiber cm?3 at demolition site A and 0.027 fiber cm?3 at demolition site B. Chrysotile asbestos was detected at both demolition sites A and B before turning on the system, but were not detected after using the system. Therefore, MB filters present an efficient alternative to current commercial filters and should be considered for use in asbestos removal applications.

© 2018 American Association for Aerosol Research  相似文献   

15.
An external electric field was applied on the filter to improve its collection efficiency, and the collection efficiencies of the different filters under various conditions were evaluated. Dominant electrical filtration mechanisms for each condition were investigated using experimental and theoretical approaches. Four types of air filters were used as test filters: a charged fiber filter, a low-grade filter with 50% collection efficiency in the most penetration particle size (MPPS) zone, and two high-grade filters with more than 95% collection efficiency in the MPPS zone. Three different particle charge states—neutralized, single-charged and uncharged—were considered. For neutralized particles, the external electric field led to a 14.5%p. and 2.5%p. increase in the collection efficiencies of the low-grade filter and charged fiber filter, respectively. With the electric field, the collection efficiency of the low-grade filter increased by 30%p. for single-charged particles. The electric field also affected the collection efficiencies of the charged filter and high-grade filters, but the effect was not significant. For uncharged particles, the electric field did not lead to a remarkable increase in the collection efficiencies of any of the filters. Through experimental and theoretical analysis, it was found that the polarization force imposed on the charged fiber was the dominant factor for the charged fiber filter regardless of application of the external electric field. The Coulombic force imposed on the electric field was the dominant factor for the low-grade filter, while both the Coulombic and the polarization forces affected the collection efficiency of the high-grade filter.

Copyright © 2017 American Association for Aerosol Research  相似文献   


16.
Nanofibrous chitosan non-wovens for filtration applications   总被引:1,自引:0,他引:1  
Chitosan containing nanofibrous filter media has the advantage of filtering material based on both its size and functionality. They can be potentially applicable in a wide variety of filtration applications ranging from water purification media to air filter media. We have fabricated nanofibrous filter media by electrospinning of chitosan/PEO blend solutions onto a spunbonded non-woven polypropylene substrate. Filter media with varying fiber diameter and filter basis weight were obtained. Heavy metal binding, anti-microbial and physical filtrations efficiencies of these chitosan based filter media were studied and correlated with the surface chemistry and physical characteristics of these nanofibrous filter media. Filtration efficiency of the nanofiber mats was strongly related to the size of the fibers and its surface chitosan content. Hexavalent chromium binding capacities up to 35 mg chromium/g chitosan were exhibited by chitosan based nanofibrous filter media along with a 2-3 log reduction in Escherichia coli bacteria cfu.  相似文献   

17.
ABSTRACT

The viscous flow fields around multifiber filters have been investigated in a previous paper. The results of the previous work show that the flow becomes periodic immediately after the first fiber array downstream from the entrance if the fibers are arranged uniformly along the flow direction. The characteristics of such flow fields enable the pressure drop and the particle interception efficiency of a multifiber filter to be represented by single-fiber models. The total filtration efficiency, however, cannot be so represented since fibers interact during filtration processes. In this study, the pressure drop and the interception efficiency were investigated by making use of the viscous flow fields modeled in the previous research. The fiber separation ratio was found to have significant effects on pressure drop and efficiency. At a given volume fraction, changes in the fiber separation ratio will result in changes to the patterns of fluid flow and aerosol particle motion. Therefore, the fiber separation ratio significantly affects pressure drop and interception efficiency.  相似文献   

18.
敬佩瑜  郑思佳  张帅  唐超  段林林  付斌 《化工进展》2021,40(10):5480-5490
为通过压降来评价不同工况下过滤分离器的除尘效率和工作状况,指导现场过滤分离器滤芯的操作和更换,本文以输气站场典型卧式过滤分离器为研究对象,采用粉尘在线检测和计算流体力学(CFD)数值模拟的方法,分析不同运行时间、运行压力下过滤分离器压降和除尘效率的静态与动态特性,并通过现场实际验证。结果表明:在相同标况流量下,操作压力越低,过滤分离器初始压降越高;随着过滤分离器的运行时间增长,其压降检测值将偏离拟合的最优二次曲线,其除尘效率也将呈下降趋势,特别是在运行压力较低时下降更快,其根源在于低压下气流速度快,可携带更多已聚结的颗粒流出,致使下游粉尘浓度上升;CFD方法预测与在线检测的除尘效率误差均低于20%,现场实际除尘量证实两种方法均有较高的准确性与可靠性,且适合过滤分离器压降与除尘效率变化的预测。  相似文献   

19.
《Journal of aerosol science》2006,37(10):1188-1197
Three types of virtual impactor were designed and fabricated to evaluate the separation efficiencies and particle losses, with different methods of increasing pressure drop, but with the same ratio of major flow rate to minor flow rate. One (type A) was a virtual impactor, with nozzle and collection probe diameters of 1.6 and 2.3 mm, respectively. The second (type B) was a modified version of type A preceded by an orifice to reduce the pressure of the particle-laden air before it entered the nozzle. The third (type C) was also a modified version of type A with nozzle and collection probe diameters of 1.2 and 1.6 mm, respectively, to further increase the particle-laden air velocity of the acceleration nozzle.The separation efficiency of the type A impactor increased with an increase of the total flow rate and pressure drop, and had high particle loss at 50% cut-off diameter. The separation efficiency of the type C impactor was higher than those of type A and type B, but the total particle loss, which was almost totally due to the collection probe loss, was larger than that of the other two types in the small particle size range. The separation efficiency curve of the type B impactor was almost the same as that for the type C and the orifice particle loss increased with an increase in the particle size.  相似文献   

20.
In this work, a series of numerical simulations are formulated for studying the performance (collection efficiency and pressure drop) of filter media with bimodal diameter distributions. While there are numerous analytical expressions available for predicting performance of filters made up of fibers with a unimodal fiber diameter distribution, there are practically no simple relations for bimodal filters. In this paper, we report on the influence of the fiber diameter dissimilarity and the number (mass) fraction of each component on the performance of a bimodal filter. Our simulation results are utilized to establish a unimodal equivalent diameter for the bimodal media, thereby taking advantage of the existing expressions of unimodal filters for capture efficiency prediction. Our results indicate that the cube root relation of Tafreshi, Rahman, Jaganathan, Wang, and Pourdeyhimi (2009) offers the closest predictions for the range of particle diameters, coarse fiber number (mass) fractions, fiber diameter ratios, and solid volume fractions (SVF) considered in this work. Our study revealed that the figure of merit (FOM) of bimodal filters increases with increasing fiber diameter ratios for Brownian particles (dp<100 nm), and decreases when challenged with larger particles. It has also been shown that when increasing the ratio of coarse fibers to fine fibers, FOM increases for Brownian particles, and decreases for larger particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号