首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
基于极大熵差分进化混合算法求解非线性方程组*   总被引:2,自引:1,他引:2  
针对非线性方程组,给出了一种新的算法——极大熵差分进化混合算法。首先把非线性方程组转换为一个不可微优化问题;然后用一个称之为凝聚函数的光滑函数直接代替不可微的极大值函数,从而可把非线性方程组的求解转换为无约束优化问题,利用差分进化算法对其进行求解。计算结果表明,该算法在求解的准确性和有效性均优于其他算法。  相似文献   

2.
针对差分进化算法进化后期收敛缓慢和稳定性不强的缺陷,将BFGS算法插入差分进化算法当中,提出了一种BFGS差分进化算法,用来求解非线性方程组。通过5个非线性方程组和一个工程实例的实验,说明:算法收敛精度较高、收敛速度较快、鲁棒性强、收敛成功率高,是一种较好的解决非线性方程组的方法。  相似文献   

3.
王开  龚文引 《控制与决策》2020,35(9):2121-2128
针对基于邻域拥挤的差分进化算法求解非线性方程组系统时存在丢根、陷入局部最优等不足,提出一种改进的差分进化算法.首先,提出一种个体预判机制,判断当前群体的个体属于哪一类,并分别采取不同的操作;其次,设计一种新的混合差分变异算子,以增强算法跳出局部最优的能力;然后,改进外部存档策略,延长了父代优秀个体在种群的保存时间,有利于搜索该优秀个体附近的根.在所选测试函数集上的实验结果表明,所提出的算法能有效搜索到非线性方程组系统的多个根,并与当前5种算法进行对比,所提出算法在找根率和成功率上更具优越性.  相似文献   

4.
求解互补问题的极大熵差分进化算法*   总被引:1,自引:2,他引:1  
针对传统算法无法获得互补问题多个最优解的困难, 提出了求解互补问题的差分进化算法。首先利用NCP函数, 将互补问题转换为一个非光滑方程组问题, 然后用凝聚函数对其进行光滑化, 进而把互补问题的求解转换为无约束优化问题, 利用差分进化算法对其进行求解。该算法对目标函数的解析性质没有要求且容易实现, 数值结果表明了该方法在求解互补问题中的有效性。  相似文献   

5.
正交差分演化算法在工程优化设计中的应用   总被引:1,自引:1,他引:0  
提出一种基于正交设计的快速差分演化算法,并把它应用于工程优化设计中。新算法在保留传统差分演化算法简单、有效等特性的同时,还具有以下一些特点:(1)引入一种基于正交设计的杂交算子,并结合约束统计优生法来产生最好子个体;(2)提出一种简单的多样性规则,以处理约束条件;(3)简化基本差分演化算法的缩放因子,尽量减少算法的控制参数,方便工程人员的使用。通过对2个工程优化实例进行实验,并与其他算法的结果作比较,其结果表明,新算法在解的精度、稳定性、收敛性和收敛速度上表现出很好的性能,并且对所优化的问题没有特殊的要求,具有很好的普适性。  相似文献   

6.
针对当前算法在求解非线性方程组时面临解的个数不完整、精确度不高、收敛速度慢等问题进行了研究,提出一种多模态多目标差分进化算法。首先将非线性方程组转换为多模态多目标优化问题,初始化一个随机种群并对种群中全部个体进行评价;然后通过非支配解排序和决策空间拥挤距离选择机制,挑选种群中的一半优质个体进行变异;接着在变异过程中采用一种新的变异策略和边界处理方法以增加解的多样性;最后通过交叉和选择机制使优质个体进行进化,直到搜索到全部最优解。在所选测试函数集和工程实例上的实验结果表明,该算法能有效地搜索到非线性方程组的解,并通过与当前四个算法进行比较,该算法在解的数量和成功率上具有优越性。  相似文献   

7.
袁磊  梁丁文  蔡之华  吴钊  谷琼 《计算机应用》2015,35(11):3151-3156
针对复杂交通路段下的短时交通流量模型的参数估计问题,建立了基于宏观交通流量预测的状态空间模型,提出了基于正交自适应差分演化的无迹卡尔曼滤波(UKF)算法,解决交通流量预测动态模型的参数优化问题.对差分演化算法(DE)的初始化过程,使用基于正交设计和量化技术的交叉算子最大限度地提高种群的多样性,平衡差分演化算法的开采性和勘探性,更高效地搜索无迹卡尔曼滤波的模型参数.并针对UKF、DE的不同情况,分别采用不同的自适应策略提高调节算法性能.实验结果表明,相对于单独使用随机分布的方式初始化,或者根据经验设置模型参数的方法,使用正交设计方法的初始化策略、变异算子以及参数自适应控制策略的差分演化算法能够有效地节省计算资源,提升预测性能和精度,具有更高的鲁棒性.  相似文献   

8.
基于粒子群算法的非线性方程组求解   总被引:8,自引:0,他引:8  
将非线性方程组的求解问题转化为无约束极大极小优化问题,并应用一种新的进化计算(EC)方法——粒子群算法(PSO)求解此优化问题。数值实验的结果验证了该方法的可行性和有效性。  相似文献   

9.
针对0-1任务规划模型存在维数灾维的问题,提出了一种基于改进差分进化算法的整数任务分配算法。将任务分配的0-1规划模型转化整数规划模型,不仅大幅降低了优化变量的维数,还减小了整式约束条件;将差分进化算法常用的变异算子DE/rand/1/bin和DE/best/2/bin结合起来组成新的变异算子,使得DE既保持了种群的多样性,又有较快的收敛速度和搜索精度,并用改进的差分进化算法求解整数规划;通过典型的任务分配实例验证了该算法在优化大规模任务分配的有效性和快速性。  相似文献   

10.
传统计算二重积分方法大都是等距分割方法,但是在在被积函数区间变化快慢相差较大时,计算精度大为降低。为此,提出一种不等距点分割的差分进化算法用于求解复杂函数的二重积分问题。在积分区域x向与y向上选取一些节点,将积分区域分割成很多小的子矩形域,并通过差分进化算法对其进行优化,使函数变化较快的区域分得小一些,函数变化较慢的区域分得大一些,从而得到较准确的二重积分。仿真结果表明,提出的算法收敛速度快,计算精度高,能计算较复杂的二重积分。  相似文献   

11.
差分进化算法简单高效,然而在求解大规模优化问题时,其求解性能迅速降低。针对该问题,提出一种正交反向差分进化算法。首先,该算法利用正交交叉算子,加强了算法的局部搜索能力。其次,为防止过强的局部搜索使算法陷入早熟收敛,利用反向学习策略调节种群多样性,从而有效地平衡算法的全局和局部搜索能力。利用11个标准测试函数进行实验,并和差分进化算法的4种优秀改进版本进行比较,实验结果表明该算法求解精度高、收敛速率快,是一种求解大规模优化问题的有效算法。  相似文献   

12.
为增强差异演化算法在求解背包问题时的局部搜索能力,提出拉马克-鲍德温混合差异演化算法。该算法采用双种群协同进化,以差异演化算法为主体,在演化过程中分别引入拉马克进化和鲍德温效应2种局部搜索算子,引导种群进化方向。仿真实验结果表明,该算法求解精度高,收敛速度快,能够高效求解背包问题。  相似文献   

13.
鄢靖丰  郭超峰  龚文引 《计算机工程》2012,38(3):187-188,192
提出一种适合求解约束问题的基于正交实验设计的差分演化算法。引入一种基于正交设计的杂交算子,并结合约束统计优生法产生最好子个体,采用决策变量分块策略,以减少正交实验次数,加快算法收敛速度。给出一种简单的多样性规则,以处理约束条件。提出基于非凸理论的多父体混合自适应杂交变异算子,以增强算法的非凸搜索能力和自适应能力。通过对13个标准测试函数进行实验,结果表明,该算法在解的精度、稳定性和收敛性上表现出较好的性能。  相似文献   

14.
求多项式方程全部实根的混合差分进化算法   总被引:1,自引:0,他引:1  
针对多项式方程求实根问题,提出了一种混合差分进化算法.在该算法中,先对标准差分进化算法进行了一些改进,对计算种群个体的适应度并排序,利用二分之一规则选取个体,并引入自适应变异算子和进化策略重组算子,用改进的差分进化算法对种群进行优化,然后引入模拟退火算法和小生境技术对生成的新个体进一步优化.通过典型算例的数值仿真表明,文中提出的算法克服了标准差分进化算法易陷入局部极优等缺点,可以求任意高次多项式方程的全部实根,而且求解效率高,是一种求解多项式方程全部实根的有效算法.  相似文献   

15.
16.
论述一种偏微分方程逆问题的数值解法和阵列机与 PVM平台上实现的并行算法。  相似文献   

17.
具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大.针对现有差分进化(differential evolution,DE)算法在高维KPC实例上求解精度不...  相似文献   

18.
差分进化算法参数的设定多采用经验选取方式,其缺点是试验运行量大以及难以得到最优参数组合,从而在很大程度上影响了算法的寻优能力。将均匀设计的试验方法引入差分进化算法的参数设定中,通过对单峰函数、多峰函数和病态函数等3种不同类型的标准测试函数进行均匀设计试验,找出适合不同类型标准测试函数的最优参数组合,从而达到对差分进化算法的参数进行设定的目的。结果显示,将经过均匀设计试验得到的两组最优的参数组合用于差分进化算法时,所获得的平均全局最优解为4.3215,平均标准差为3.650。可见,利用均匀试验设计方法对基本差分进化算法的参数进行设定是可行且有效的,同时具有较好的稳定性。  相似文献   

19.
对制造资源的选择问题进行分析,并建立数学模型,提出一种适合求解该问题的正交差异混合演化算法。该算法使用子空间收缩技术和多子竞争策略,使收敛速度得到明显提高。实验结果表明,与其他算法相比,该混合演化算法在解的质量、稳定性和收敛速度方面均具有较好的性能。  相似文献   

20.
A Fuzzy Adaptive Differential Evolution Algorithm   总被引:8,自引:5,他引:8  
The differential evolution algorithm is a floating-point encoded evolutionary algorithm for global optimization over continuous spaces. The algorithm has so far used empirically chosen values for its search parameters that are kept fixed through an optimization process. The objective of this paper is to introduce a new version of the Differential Evolution algorithm with adaptive control parameters – the fuzzy adaptive differential evolution algorithm, which uses fuzzy logic controllers to adapt the search parameters for the mutation operation and crossover operation. The control inputs incorporate the relative objective function values and individuals of the successive generations. The emphasis of this paper is analysis of the dynamics and behavior of the algorithm. Experimental results, provided by the proposed algorithm for a set of standard test functions, outperformed those of the standard differential evolution algorithm for optimization problems with higher dimensionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号