首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The precipitation of different forms of magnesium carbonate has been studied at temperatures between 25 and and at a partial pressure of CO2 between 1 and 100 bar. These conditions are relevant for mineral carbonation applications. Precipitation was triggered by the supersaturation created by mixing Na2CO3 solutions in equilibrium with a CO2 atmosphere with MgCl2 solutions. Experiments were monitored using attenuated total reflection Fourier transform infrared (ATR-FTIR) and Raman spectroscopy as well as a focused beam reflectance measurement (FBRM) probe and a turbidimeter. Solubility and supersaturation were calculated using the software package EQ3/6. Solids were identified using X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) images. At and , only the hydrated carbonate nesquehonite (MgCO3·3H2O) precipitates, as it has previously been observed. Solutions undersaturated with respect to nesquehonite did not form any precipitates in experiments lasting 16 h. Induction times increased with decreasing supersaturation with respect to nesquehonite. At and , hydromagnesite ((MgCO3)4·Mg(OH)2·4H2O) was formed which transformed within 5-15 h into magnesite (MgCO3). Solutions undersaturated with respect to brucite (Mg(OH)2) did not form any precipitates in experiments lasting 19 h. At and , direct formation of magnesite and, at elevated levels of supersaturation, the co-precipitation of magnesite and hydromagnesite has been observed. In the latter case, hydromagnesite transformed within a few hours into magnesite. Solutions undersaturated with respect to hydromagnesite did not form any precipitates in experiments lasting 20 h.  相似文献   

4.
Many oxidation reactions, including H2 combustion with O2, have been shown to admit the phenomenon of parametric sensitivity. Given its inertness to oxidation and non-flammable nature, supercritical CO2 (scCO2) is a desirable solvent for performing oxidations. Further, for oxidations that employ H2O2 as an oxidant, the use of scCO2 as a solvent has been suggested for producing H2O2 in situ by reacting H2 and O2. Another significant, and as yet not fully understood, advantage of using scCO2 is the ability to exploit its liquid-like heat capacity, which exhibits a maximum in the near-critical region (1.01-1.2Tc and 0.9-2.0Pc). It is shown in this modeling study that by performing an oxidation reaction in scCO2, the temperature rise accompanying the highly exothermic reaction can be effectively controlled. To demonstrate this concept, we simulated the maximum temperature rise (ΔTad) for H2 combustion with O2 in CO2 in a constant-pressure adiabatic reactor, at feed temperatures ranging from 300 to and reactor pressures from 1 to . At a feed temperature of , a five-fold reduction in ΔTad value (from 209 to ) is predicted by tuning the operating pressure from 1 to . In contrast, the ΔTad in N2 medium is relatively insensitive in the 1- pressure range and is six times greater (roughly ) compared to the value predicted with CO2 medium at . Further, the values of β (the dimensionless temperature rise parameter) may also be sensitively tuned with pressure in the near-critical region such that parametric sensitivity is minimized. These results indicate that the liquid-like heat capacities of scCO2 may be exploited to control the adiabatic temperature rise and to ameliorate parametric sensitivity during exothermic reactions, a problem of fundamental and practical significance.  相似文献   

5.
6.
A particle reaction model including mass and heat transfer has been developed to know the temperature variations produced inside the oxygen carrier particles during the cyclic reduction and oxidation reactions taking place in a chemical-looping combustion (CLC) system. The reactions of the different oxygen carriers based on Cu, Co, Fe, Mn, and Ni during the reduction with fuel gas (CH4, CO, and H2) and oxidation (O2) have been considered. In these systems, the oxidation reaction is always exothermic with subsequent heat release; however, the reduction reaction can be exothermic or endothermic depending on the metal oxide and the fuel gas. The heat generated inside the oxygen carriers during the exothermic reactions increases the particle temperature, and could affect the particle structure if the temperature increase is near to the melting point of the active materials. Several variables that affect the reaction rate and the heat transport process have been analyzed to know their effect on the internal particle temperature. For a given oxygen carrier and reaction, the maximum temperature of the particles depended mainly on the particle size, the reaction rate, and the external heat transfer resistance, being lower than the effect of the oxygen carrier porosity, type of inert material, and metal oxide content. The highest temperature variations were reached for the oxidation reactions, with the maximum corresponding to the Ni and Co oxygen carriers with values of for particles. The highest temperature increase observed during the reduction reactions corresponded to the reaction of CuO with CO, with values of for particles. For the rest of the reactions and metals, the variations in the particle temperature were below for particle sizes below . Under the typical operating conditions that exist in a CLC system, with particle sizes lower than , % of metal oxide content, and overall conversion times lower than , the increases of temperature with respect to the bulk conditions were lower than for any reaction of any oxygen carrier. Moreover, the temperature profiles inside the particles were near flat in most of the practical conditions, and no local points with high temperatures were found. Thus, changes in the solid porous structure of the carrier due to sintering during oxidation in fluidized bed reactors are not expected working at typical temperatures of CLC systems (1000-).  相似文献   

7.
Many commercial processes for the removal of carbon dioxide from high-pressure gases use aqueous potassium carbonate systems promoted by secondary amines. This paper presents thermodynamic and kinetic data for aqueous potassium carbonate promoted by piperazine. Research has been performed at typical absorber conditions for the removal of CO2 from flue gas.Piperazine, used as an additive in 20- potassium carbonate, was investigated in a wetted-wall column using a concentration of at 40-80°C. The addition of piperazine to a potassium carbonate system decreases the CO2 equilibrium partial pressure by approximately 85% at intermediate CO2 loading. The distribution of piperazine species in the solution was determined by proton NMR. Using the speciation data and relevant equilibrium constants, a model was developed to predict system speciation and equilibrium.The addition of piperazine to potassium carbonate increases the rate of CO2 absorption by an order of magnitude at 60°C. The rate of CO2 absorption in the promoted solution compares favorably to that of MEA. The addition of piperazine to potassium carbonate increases the heat of absorption from 3.7 to . The capacity ranges from 0.4 to for PZ/K2CO3 solutions, comparing favorably with other amines.  相似文献   

8.
Catalytic hydrogenations reactions are frequently conducted in “dead-end” multiphase stirred reactors with the reactant dissolved either in an alcohol, or in water or a mixture of the two. In such systems, the rate of gas-liquid mass transfer, which depends on bubble size, may well be the overall rate-limiting step. However, a study of bubble sizes across the whole range of solvent compositions from entirely water to entirely organic has not been reported. Here, for the first time, a systematic investigation has been made in a 3 L, closed vessel simulating a “dead-end” reactor containing 1% by volume of air which is dispersed by a Rushton turbine in water, isopropanol (IPA) and mixtures of the two, with and without 2-butyne-1,4-diol simulating a reactant. Mean specific energy dissipation rates, , up to have been used and bubbles size distributions and mean size were measured using a video-microscope-computer technique. In the single component solvents (water, ; IPA, though the interfacial tensions are very different, irregular, relatively large bubbles of similar sizes were observed ( in IPA, and in water) with a wide size distribution. In the mixed aqueous/organic solvents, and especially at the lower concentrations of IPA (1%, 5%, 10%), the bubbles were spherical, much smaller (d32 from 50 to ) with a narrow size distribution. The addition of the reactant (0.2 M 2-butyne-1,4-diol) to the mixed solvents had little effect on the mean size, shape or distribution. However, addition to water (thus producing a mixed aqueous/organic liquid phase) led to small spherical bubbles of narrow size distribution. Neither Weber number nor surface tension was suitable for correlating bubble sizes since σ decreased steadily from pure water to IPA whilst bubble size passed through a minimum at around 5% IPA. For any particular fluid composition, the functionality between d32 and was similar, i.e. . The above observations are explained in terms of the polarisation of bubble surfaces in miscible mixed aqueous/organic liquids caused by preferential directional adsorption at low concentrations of the organic component with its hydrophilic part directed into the aqueous phase and its hydrophobic part into the gas phase. As a result, coalescence is heavily suppressed in the low-concentration miscible alcohol (or diol)/aqueous systems whilst strong coalescence dominates bubble sizes in water and the alcohol and at high concentrations of the latter.  相似文献   

9.
A high pressure wet-type jet mill was employed to disperse nano-particle suspensions. Commercially available nano-particles, fumed silica (SiO2) of primary particle diameter (d0) ranging from 7 to 40 nm, alumina (Al2O3) of and titanium oxide (TiO2) of were dispersed in the continuous phase up to viscosity . Ion exchanged water, aqueous ethylene glycol and aqueous polyethylene glycol solutions with molecular weight up to 2 000 000, were used as the continuous phase. Particle size distribution, zeta potential and suspension viscosity were measured under a wide range of process conditions. The smaller the d0 was, the harder it was to disperse the aggregates. Zeta potential was largely dependent on d0 at any process conditions and became dependent on ηc for . The energy barrier was evaluated by taking van der Waals attractive forces, electrostatic repulsive forces and dispersive forces into consideration. Cavitation measurements showed a negligible cavitation during the passage through the jet mill; therefore aggregate disruption was modeled for fully turbulent flow. Aggregate disruption occurred in inertia sub-range for and in viscous sub-range for . By balancing mechanical energy with turbulent disruptive energy, a mechanistic model was developed for each sub-range. The analysis of fractal dimensionality showed that nano-aggregates were made up by particle-particle collision in inertia sub-range and orthokinetic cluster-cluster collision in viscous sub-range. The rheological data obtained were expressed according to a modified Casson model.  相似文献   

10.
A gel polymer electrolyte (GPE) was prepared using tetra(ethylene glycol) diacrylate monomer, benzoyl peroxide, and (). The LiCoO2/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures.The viscosity of the precursor containing the tetra(ethylene glycol) diacrylate monomer was around . The ionic conductivity of the gel polymer electrolyte at 20°C was around . The gel polymer electrolyte had good electrochemical stability up to vs. Li/Li+. The capacity of the LiCoO2/GPE/graphite cell at rate was 63% of the discharge capacity at rate. The capacity of the cell at −10°C was 81% of the discharge capacity at 20°C. Discharge capacity of the cell with gel polymer electrolyte was stable with charge-discharge cycling.  相似文献   

11.
12.
《Polymer》2005,46(25):11322-11329
Poly(3-mesityl-2-hydroxypropyl methacrylate-co-N-vinyl-2-pyrrolidone) P(MHPMA-co-VP) was synthesized in 1, 4-dioxane solution using benzoyl peroxide (BPO) as initiator at 60 °C. The copolymer was characterized by 1H 13C NMR, FT-IR, DSC, TGA, size exclusion chromatography analysis (SEC) and elemental analysis techniques. According to SEC, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of PMHPMA-co-VP were found to be 58,000, 481,000 g/mol and 8.26, respectively. According to TGA, carbonaceous residue value of PMHPMA-co-VP was found to be 6% at 500 °C. Also, some thermodynamic properties of PMHPMA-co-VP such as the adsorption enthalpy, ΔHa, molar evaporation enthalpy, ΔHv, the sorption enthalpy, , sorption free energy, , sorption entropy, , the partial molar free energy, , the partial molar heat of mixing, , at infinite dilution was determined for the interactions of PMHPMA-co-VP with selected alcohols and alkanes by inverse gas chromatography (IGC) method in the temperature range of 323-463 K. According to the specific retention volumes, , the weight fraction activity coefficients of solute probes at infinite dilution, , and Flory-Huggins interaction parameters, between PMHPMA-co-VP-solvents were determined in 413-453 K. According to and , selected alcohols and alkanes were found to be non-solvent for PMHPMA-co-VP at 413-453 K. The glass transition temperature, Tg, of the PMHPMA-co-VP found to be 370 and 363 K, respectively, by IGC and DSC techniques, respectively.  相似文献   

13.
Investigation was carried out on the optimal conditions of the synthesis of KVO3 and Cl2 from KCl and V2O5 in the presence of atmospheric oxygen. The research was performed for the temperature range 673- for 1-. The influence of the air flux rate on the reaction yield was investigated.  相似文献   

14.
Experimental data on the rate of decomposition of CO2 gas hydrates has been obtained using a semi-batch stirred tank reactor, with an in-situ particle size analyser, at temperatures ranging from 274 to and pressures ranging from 1.4 to . A method for calculating the moments of the particle size distribution has been presented. The experimental data was analysed using the kinetic model of Clarke and Bishnoi (Determination of the intrinsic kinetics of gas hydrate decomposition kinetics using particle size analysis, Presented at the Third International Conference on Gas Hydrates, Salt Lake City, Utah, July 18-22, 1999; Chem. Eng. Sci. 55 (2000) 4869) in its differential form in order to account for the slight change in temperature during the decomposition of CO2 hydrates. The applicability of the new instrument for measuring gas hydrate decomposition kinetics was examined by conducting experiments with ethane at conditions similar to those encountered by Clarke and Bishnoi (2000). It was seen that the previously obtained rate constants for ethane hydrate decomposition were able to predict the new obtained data. A new procedure for regressing the intrinsic rate constant and activation energy has also been described and it is seen that the activation energy is and the intrinsic rate constant is for CO2 gas hydrate decomposition.  相似文献   

15.
This paper focuses on the adsorption of gaseous trichloroethylene, toluene and chlorobenzene on the photocatalyst TiO2 Degussa P25. An optimized EPICS (Equilibrium Partitioning In Closed Systems) methodology was used to study equilibrium partitioning. For the three compounds investigated, equilibrium adsorption was reached within of incubation. Adsorption isotherms, determined at a temperature (T) of and relative humidities (RH) of 0.0% and 57.8% were found to be linear (R2>0.993,n=5), indicating that no monolayer surface coverage was reached in the concentration interval studied ). Within the linear part of the isotherm, the influence of both relative humidity and temperature was investigated in a systematic way and discussed from a thermodynamic point of view. Data analysis resulted in a double linear regression for 22% ?RH?90% and . The equilibrium adsorption coefficient represents the equilibrium concentration ratio and ΔUads is the internal energy of adsorption . At RH=0.0%, experimental K values were a factor 5-10 higher than those expected from the regression equation, indicating that another adsorption mechanism becomes important below monolayer surface coverage of TiO2 by water vapour molecules. Since surface interactions are of primary importance in photocatalytic reactions, this paper contributes to a better understanding of the basic mechanisms of TiO2 mediated heterogeneous photocatalysis and is an interesting tool for developing optimized mathematical models.  相似文献   

16.
17.
Tar elimination and hot-gas conditioning in thermochemical conversion processes, i.e. thermal gasification, pyrolysis of heterogeneous materials involved two main classes of catalysts and/or additives: metallic and mineral oxides. This communication focused on the experimental kinetic data on catalytic steam cracking of vaporized toluene ( space-time ) as a tar-derived species and/or Volatile Organic Compound (VOC). Toluene (C7H8) has been chosen as a model formula for reactive tar-derived one-ring species determined from tar constituents. Gaseous product distribution data were obtained at atmospheric pressure steam pyrolysis temperature range of 923-1223 K and GHSV 1200-2300 Nm3 (m3 h)−1. The overall catalytic pyrolysis of toluene over a commercial available metal based catalyst NiMo/γ-Al2O3 was compared to the pyrolysis in presence of basic non-metallic mineral additives, i.e. Norwegian (Norsk Hydro) dolomitic magnesium oxide [MgO], Swedish low surface quicklime [CaO], and calcined dolomite [CaMg(O)2]. The operational conditions were applied without internal or external mass-transfer limitations. Kinetics for the pyrolysis could be described by first-order reactions for all the studied additives. The influence of hydrogen gas (30 vol%, ) and water vapor () in vaporized toluene cracking runs over low surface quicklime [CaO] was determined. A mechanistic model of the Langmuir-Hinshelwood type describing toluene decomposition was also developed.  相似文献   

18.
Kinetics of absorption of carbon dioxide in aqueous piperazine solutions   总被引:1,自引:0,他引:1  
In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to , and carbon dioxide pressures up to 500 mbar, respectively. The obtained experimental results were interpreted using the DeCoursey equation [DeCoursey, W., 1974. Absorption with chemical reaction: development of a new relation for the Danckwerts model. Chemical Engineering Science 29, 1867-1872] to extract the kinetics of the main reaction, 2PZ+CO2PZCOO-+PZH+, which was assumed to be first order in both CO2 and PZ. The second-order kinetic rate constant was found to be at a temperature of , with an activation temperature of . Also, the absorption rate of CO2 into partially protonated piperazine solutions was experimentally investigated to identify the kinetics of the reaction . The results were interpreted using the Hogendoorn approach [Hogendoorn, J., Vas Bhat, R., Kuipers, J., Van Swaaij, W., Versteeg, G., 1997. Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions. Chemical Engineering Science 52, 4547-4559], which uses the explicit DeCoursey equation with an infinite enhancement factor which is corrected for reversibility. Also, this reaction was assumed to be first order in both reactants and the second-order rate constant for this reaction was found to be at 298.15 K.  相似文献   

19.
20.
Successive calcination-carbonation cycles, using CaO as sorbent, have been performed either in a classical fixed bed reactor or using a thermogravimetric analyser. Significant differences in carbonation efficiencies were obtained, possibly due to different conditions prevailing for CaO sintering during the calcination stage. The effect of the presence of CO2 on sintering was confirmed.A simple model of the decay of the carbonation capacity along cycles based on the specific surface area of non-sintered micrograins of CaO is able to predict the decrease of the extent of conversion obtained after 40 carbonations along calcination-carbonation cycles. The asymptotic extent of conversion is obtained when all the micrograins present within a grain are sintered. A detailed model of the carbonation shows that the voids present between the micrograins are filled up by carbonate when a critical thickness of the carbonate layer around each micrograin reaches 43 nm. Then, carbonation becomes controlled by diffusion at the scale of the whole grain, with the CO2 diffusion coefficient decreasing (at ) from 2×10-12 to as carbonation proceeds from 50% conversion to 76% (first cycle). This scale change for diffusion is responsible for the drastic decrease of the carbonation rate after the voids between micrograins are filled up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号