首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common method of filtration is via fibrous nonwoven media. Fibrous filters are generally characterized by their collection efficiency and pressure drop. Traditional computational studies in this area are typically based on unrealistic 2-D geometries with the fibers simply placed in a lattice (regular array) perpendicular to the flow. The traditional approaches however, do not permit studying the relation between the 3-D structure of a filter media and its performance. In this study, for the first time, a virtual 3-D web is generated based on the fiber orientation information obtained from analyzing microscopic images of lightweight spun-bonded filter media. Pressure drop and collection efficiency of our virtual filter are simulated and compared with the previous 2-D analytical and numerical models as well as experiment. Our pressure drop calculation, unlike the previous models, showed a perfect agreement with the predictions of the Davies’ empirical equation. The collection efficiencies obtained from simulating a thin spun-bonded filter media challenged with submicron particles having diameters ranging from 50 to 500 nm showed a similar trend as that of the previous 2-D models. For the solid volume fraction (SVF), filter thickness, and the fiber and particle diameters considered in this study, we found collection efficiencies higher than that of the above mentioned 2-D models with a relatively good agreement with experimental data obtained from a TSI 8130 filter tester.  相似文献   

2.
Conventional, mechanical fibrous filters made of microfibers exhibit a local minimum of fractional collection efficiency in the aerosol particle size-range between 100 and 500 nm, which is called the most penetrating particle size (MPPS). Simple theoretical calculations predict that this efficiency may be significantly increased using nanofibrous media. The main objective of this paper is an experimental verification of these expectations and simultaneously checking whether this anticipated gain in the filtration efficiency is not overpaid with an excessive pressure drop. For this purpose we developed a modified melt-blown technology, which allowed us to produce filters composed of micrometer as well as nanometer sized fibers. One conventional microfibrous filter and five nanofibrous filters were examined. The complete structural characteristics, pressure drop and efficiency of removal of aerosol particles with diameters 10-500 nm were determined for all media. The results of the experiments confirmed that using nanofibrous filters a significant growth of filtration efficiency for the MPPS range can be achieved and the pressure drop rises moderately. Simultaneously, we noticed a shift of the MPPS towards smaller particles. Consequently, the quality factor for bilayer systems composed of a microfibrous support and a nanofibrous facial layer was considerably higher than this one for a conventional microfibrous filter alone. Additionally, it was found that utilization of many-layer nanofibrous filters combined with a single microfibrous backing layer is even more profitable from the quality factor standpoint. Comparing experimental results with theoretical calculations based on the single-fiber theory we concluded that for microfibrous filters a fairly good agreement can be obtained if the resistance-equivalent fiber diameter is used in calculations instead of the mean count diameter determined from the SEM images analysis; in the latter case, filtration efficiency computed theoretically is slightly overestimated. This is even more evident for nanofibrous media, suggesting that in such case a structural filter inhomogeneity has a strong influence on the filter efficiency and its resistance and one should strive for minimization of this effect manufacturing nanofibrous filters as homogeneous as possible. We can finally conclude that fibrous filters containing nanofibers, which are produced using the melt-blown technique, are very promising and economic tools to enhance filtration of the most penetrating aerosol particles.  相似文献   

3.
大部分纤维捕集效率和压降的理论模型认为纤维性能仅取决于来流速度、颗粒粒径、纤维体积分数、过滤层厚度、纤维直径等因素。实际上,布袋除尘器的性能还与纤维配置方式直接相关。利用LB(lattice Boltzmann)两相流模型对多层纤维捕集颗粒物过程进行了数值模拟,研究了不同纤维配置方式下系统压降与捕集效率的变化。结果表明,错列纤维的性能参数优于并列纤维;纤维排列间距增大,压降增幅大于捕集效率,导致性能参数下降。通过比较不同位置纤维的捕集能力发现,在布朗扩散和拦截捕集机制主导下,前方纤维捕集能力略强于后方纤维;而在惯性碰撞捕集机制主导时,对捕集贡献最大的主要是前两排纤维,后方纤维对捕集效率的贡献非常小,可以忽略。这些研究结果可以对布袋除尘器的多层纤维配置方式的优化提供理论依据和工程建议。  相似文献   

4.
Electret filters are composed of thin, electrically charged fibers that are often utilized in industrial fields that require high collection efficiency with low flow resistance. A bundle-type electret filter in the Mechanical Ventilation and Air-Conditioning (MVAC) system of a Metro-subway was characterized in this study. The particle penetration and pressure drop parameters were examined under a filtration velocity ranging from 0.5 to 2.5 m/s. Particle penetration increased significantly in the early stages of filtration, but then became steady. The filter quality, which is a useful index of the filtration performance incorporating pressure drop and filtration efficiency, was evaluated for the test filters. The fiber bundle filter demonstrated a higher filter quality than the mechanical filter or the general panel-type electret filter with a small drop in pressure even at a high filtration velocity. In addition, the three dimensional structure and high electrostatic charge of the fiber bundle filter would enable a long retention time and constant level of pressure drop throughout the filtration.  相似文献   

5.
We investigate the filtration performance of composite filters composed of micrometer and nanometer fibers. The filter quality is evaluated using the figure of merit, also known as the quality factor. We use analytical expressions for the pressure drop and filtration efficiency to compute the figure of merit. The effects on the figure of merit by fiber diameter, solidity, and thickness of nanometer and micrometer fibers and face velocity are investigated. Experimental data obtained using conventional filter media and nanofiber composite filters are then used to verify the calculated results. We find that for large particles (approximately 0.1 μm and above), nanofibers can improve the figure of merit compared to conventional filters. Smaller fiber size, larger solidity, and thickness of the nanofiber layer lead to better filtration performance in this size range. For small particles (approximately below 0.1 μm), nanofibers do not improve the figure of merit compared to conventional filter media. Larger fiber size, smaller solidity, and thickness of the nanofiber layer are preferred in this size range. We demonstrate that our procedure using analytical expression is a fast and effective tool for filter media design.  相似文献   

6.
Filtration of spinning solutions, spinning bath, and finishing solutions through a layer of fibrous material is widely used in different chemical fiber plants. In finishing of textile fibers on spools and cakes, the liquid is filtered through a layer of fiber attached by winding. At the same time, filtration is through a layer of unattached, freely packed fibrous material with random orientation of the individual fibers or through layers of nonwoven material in filtration on filters with a metal — gauze — asbestos gravity layer, in fiber finishing or modification processes, and in processes involving ion-exchange, chemisorption, and catalytically active fibrous materials.Moscow State Textile Academy. Translated from Khimicheskie Volokna, Vol. 25, No. 1, pp. 13–15, January–February, 1993.  相似文献   

7.
Experiments are carried out using special filters with known structural characteristics to study the stationary phase of filtration of liquid aerosols by fibrous filters in the diffusion, interception and inertial regimes. In the domains of diffusion and interception, a comparison made with published models has enabled the selection of two relationships correctly describing these mechanisms both in the slip and continuum regimes. On the other hand, in the inertial domain, an empirical correlation has been established for the single fiber impaction efficiency for viscous flows. All our results have been validated by measurements on an industrial filter.  相似文献   

8.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

9.
ABSTRACT

The viscous flow fields around multifiber filters have been investigated in a previous paper. The results of the previous work show that the flow becomes periodic immediately after the first fiber array downstream from the entrance if the fibers are arranged uniformly along the flow direction. The characteristics of such flow fields enable the pressure drop and the particle interception efficiency of a multifiber filter to be represented by single-fiber models. The total filtration efficiency, however, cannot be so represented since fibers interact during filtration processes. In this study, the pressure drop and the interception efficiency were investigated by making use of the viscous flow fields modeled in the previous research. The fiber separation ratio was found to have significant effects on pressure drop and efficiency. At a given volume fraction, changes in the fiber separation ratio will result in changes to the patterns of fluid flow and aerosol particle motion. Therefore, the fiber separation ratio significantly affects pressure drop and interception efficiency.  相似文献   

10.

Classical filtration models consider filter media as homogeneous and use an arbitrary inhomogeneity factor to account for the differences between theory and experiments. The variations in media-packing density have been experimentally observed and seen to be significant. There is minimal experimental information on the effect of these variations on filter performance. In this paper, local efficiency variations in commercial fibrous filters have been obtained for varying operating conditions. A filter scanner was developed to measure local filter efficiencies, and the features of the scanner are described in detail. The variations in local efficiencies are seen to have a Gaussian distribution, and the operating conditions and media behavior influence the variability in the local efficiency data. Theoretical modeling can be used to obtain two-dimensional packing density distribution data from the local efficiency measurements.  相似文献   

11.
A computer program has been developed to simulate the filtration process in fibrous filters collecting monodisperse aerosol particles. The model filter is represented by an array of parallel cylindrical fibers and the Kuwabara flow field is employed to determine the particles trajectories inside the filter. The simulation model is based on the Monte-Carlo (self-driven) principle, and a sequence of uniform pairs of pseudorandom numbers is generated representing the initial locations of the approaching particles. The estimation of the initial collection efficiency through the simulation model that considers the deposited particles and the presence of dendrites is in good agreement with published experimental data. The development of the quasi three-dimensional simulation model offers a detailed information about the transient progression of the deposition process. The transient behavior of the pressure drop across the collector system (the fiber and the collected particles) and the morphology of deposit are presented and the results are in good agreement with experimental data.  相似文献   

12.
In this work catalytic fibrous filters were produced through two distinct processing routes from natural amorphous silica fibers (NASF) and Ni(NO3)2 solution (wet route) and NiO (dry route) as catalyst precursors. The Ni–SiO2 fibers were characterized for X-ray powder diffraction, scanning electron microscope, particle size distribution, specific surface area, nickel contents, porosity, tortuosity, permeability, compressive strength, degree of dispersion, filtration and gas conversion efficiency. Morphological characterization revealed that Ni from wet route was distributed over the silica fibers with significantly lower particle size than the Ni produced through the dry route. Both methods led to a homogeneous distribution of Ni. The catalytic fibrous filter obtained from the dry route showed higher conversion efficiency for both propylene and propane, especially at high temperatures, due to the higher degree of dispersion of Ni particles over the NASF surfaces.  相似文献   

13.
Most filtration models assume that the air stream runs perpendicularly to the orientation of the filter fibers. However, cigarette filters remove aerosol particles apparently by a different filter configuration in that the fiber orientation almost parallels the air streamlines. To focus on the effect of fiber orientation, cellulose acetate filters were used in this work to facilitate the filter performance comparison. A piece of original round cigarette filter was molded to form a cube. The same piece of filter was used for both perpendicular and parallel orientations, to avoid the variability caused by the non-uniform filter media distribution. DOP aerosol particles used in the tests were generated by either a constant output aerosol nebulizer or an ultrasonic atomizing nozzle. A Po-210 radiation source was used to neutralize the challenge aerosols to the Boltzmann charge equilibrium. A scanning mobility particle sizer (for < 0.8 μm) and an aerodynamic particle sizer (for > 0.8 μm) were used to measure aerosol number concentrations and size distributions upstream and downstream of the cigarette filters. The results showed that parallel and orthogonal filters behave similarly. However, the pressure drop across parallel filter was lower than for the perpendicular filter, indicating that the airflow is more laminar passing through the parallel filters. Possibly for the same reason, aerosol penetration through parallel filter was higher than the orthogonal filter, although the difference may not be statistically significant. When a comparison of the fiber orientation is based on filter quality, orthogonal filter performs better than parallel filter, if face velocity is lower than 60 cm/s. Parallel filter performs better only when the particles are smaller than the most penetrating size and under high face velocity.  相似文献   

14.
We have developed new high efficiency particulate absorbing filter materials by bonding the fiber web with the help of high pressure water jets emerging from micron sized nozzles and subsequently coating the filters with a chemical binder. Two different types of nonwoven filters are produced by varying the water jet pressure during the bonding process. The performance characteristics of the filter materials are evaluated in terms of filtration parameters, such as filtration efficiency, dust holding capacity, and pressure drop. Filtration efficiency depends on the pore characteristics, namely pore size and their distribution in the filters. The developed filter materials have shown promising performance characteristics by capturing higher amount of dust particles with a relatively low pressure drop during use. These filter materials can be used for a wide range of industrial applications, where high filtration efficiency is required at low energy consumption. A fluid flow simulation is carried out by computational fluid dynamics (CFD) to understand flow pattern during the bonding process. The CFD is also used to predict the pressure drop in the nonwoven filter materials during filtration process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In the present study, we measured the penetration of silver nanowires with the mobility diameter in the range from 200 to 400 nm through two different types of polyester filters: the screen filter with the solidity of 0.505 and fibrous filter with the solidity of 0.278. The orientation angles of silver nanowires passing through the single layer and multi-layers of polyester filter were experimentally estimated on the basis of the single fiber efficiency theory. In the case of the screen filter, the orientation angle obtained by fitting the experimental data for single layer was found to be close to 40?, indicating a random orientation of nanowires near the filter. However, the fibrous filter has the orientation angle much larger than 40?. The orientation angle can be affected by inhomogeneity of the filter. In particular, in the case of the fibrous filter, the solidity and fiber diameter may affect the orientation angle. For multi-layers of both screen and fibrous filters, it is difficult to determine the typical orientation angle and the fibrous filter tends to have a larger orientation angle than the screen filter. In addition, we carried out numerical simulations on the penetration of silver nanowires through the five layers of screen filter and the single layer of both screen and fibrous filters. Numerical prediction was carried out by using the three-dimensional numerical model determined by solidity and thickness of fibrous filter. Numerical predictions are highly congruent with experimental results and theoretical prediction.

© 2017 American Association for Aerosol Research  相似文献   

16.
The article presents experimental results and theoretical analysis of aerosol nanoparticle penetration through fibrous filters with a broad fiber diameter distribution. Four fibrous filters were produced using the melt-blown technique. The analysis of the filters’ SEM images indicated that they had log-normal fiber diameter distribution. Five kinds of proteins and two types of silica particles were generated by electrospraying and were then classified using a Parallel Differential Mobility Analyzer to obtain well-defined, monodisperse, singly charged challenge aerosols with diameters ranging from 6.3 to 27.2 nm. Particle penetration through the filters was determined using a water-based CPC. Experimental results were compared first with predictions derived from the classical theory of aerosol filtration. It is demonstrated that it is inappropriate to apply it to the arithmetic mean fiber diameter, as this results in turn in a huge underestimation of nanoparticle penetration. A better, but still unsatisfactory agreement is observed when that theory was used together with the pressure drop equivalent fiber diameter or when the Kirsch model of nonuniform fibrous media was applied. We show that the classical theory applied to any fixed fiber diameter predicts a stronger dependence of nanoparticle penetration on the Peclet number as compared to experimental data. All these observations were successfully explained by using our original partially segregated flow model that accounts for the filter fiber diameter distribution. It was found that the parameter of aerosol segregation intensity inside inhomogeneous filters increases with the increase in particle size, when the convective transport becomes more pronounced in comparison to the diffusive one.  相似文献   

17.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection–induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

18.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection-induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

19.

Deposition of polydisperse aerosols by Brownian diffusion was studied analytically using the penetration efficiency of monodisperse aerosols combined with the correlations among the moments of lognormal distribution functions. The analytic solutions, so obtained were validated using the exact solutions, which were applied to recalculate the filtration efficiencies of the existing experimental data for various filtration conditions. It was found that the collection efficiency of a fibrous filter should be corrected with respect to the position in the filter, if the particles are polydisperse. By considering the effect of the polydispersity of particle size, the analytic solutions showed good agreement with existing experimental data. It is believed that the present work makes it possible to determine the filtration efficiency of polydisperse aerosols in fibrous filters and to estimate errors associated with the degree of polydispersity of the particles quickly and accurately for the diffusion dominant regime.  相似文献   

20.
In addition to collection efficiency, pressure drop is the most important characteristic of a filter medium. While there are numerous analytical expressions available for predicting the pressure drop of the filters made up of fibers with a unimodal fiber diameter distribution, there are not enough studies dedicated to filters composed of fibers with a bimodal (or multimodal) fiber diameter distribution. In this work, the pressure drop per unit thickness of filters made of bimodal fiber diameters is calculated by solving the Navier-Stokes equations in a series of 2-D geometries. These results are used to find the unimodal equivalent diameters of each bimodal filter that could be used in the existing expressions for calculating pressure drop. In agreement with the work of Brown and Thorpe [Brown, R.C., Thorpe, A., Glass-fiber filters with bimodal fiber size distributions. Powder Technology 118 (2001) 3-9.], it was found that the area-weighted averaging of the fiber diameters in a bimodal filter provides a relatively good estimation of its equivalent unimodal fiber diameter. We, however, noticed that in such an averaging the error percentage in the pressure drop prediction is sensitive to the fiber diameter ratios as well as the fraction of each fiber diameter in the bimodal filter. We, therefore, obtained a correction factor for the estimation of the unimodal equivalent diameters as a function of fiber diameter ratio and their number fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号