首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unipolar charger with multiple discharging wires has been developed and investigated to enhance the extrinsic charging efficiency of nanoparticles by using sheath air near the wall of the charger. The applied voltage of the charger ranged from +4.0 to +10 kV, corresponding to corona current from 0.02 to 119.63 μA. Monodisperse NaCl particles of 10 ~ 50 nm and Ag particles of 2.5 ~ 10 nm in diameter were produced to test the performance of the charger with multiple discharging wires and to investigate the particle loss at different sheath flow rates, corona voltages and sheath air velocities. Results showed that the optimal efficiency in the charger was obtained at +9 kV applied voltage, 10 L/min aerosol flow rate and 20 L/min sheath air flow rate. The extrinsic charging efficiency increased from 2.86% to 86.3% in the charger as the particle diameter increasing from 2.5 to 50 nm. The TDMA (tandem-differential mobility analyzer) technique was used to investigate the charge distribution, and the charge distributions in the exit were obtained at the optimal operating condition.  相似文献   

2.
A combination of a differential mobility analyzer (DMA) and aerosol particle mass analyzer (APM) is used to measure the mass of NIST Standard Reference Materials (SRM®) PSL spheres with 60 and 100 nm nominal diameter, and NIST traceable 300 nm PSL spheres. The calibration PSL spheres were previously characterized by modal diameter and spread in particle size. We used the DMA to separate the particles with modal diameter in a narrow mobility diameter range. The mass of the separated particles is measured using the APM. The measured mass is converted to diameter using a specific density of 1.05. We found that there was good agreement between our measurements and calibration modal diameter. The measured average modal diameters are 59.23 and 101.2 nm for nominal diameters of 60 and 100 nm (calibration modal diameter: 60.39 and 100.7 nm) PSL spheres, respectively. The repeatability uncertainty of these measurements is reported. For 300 nm, the measured diameter was 305.5 nm, which is an agreement with calibration diameter within 1.8%.

The effect of spread in particle size on the APM transfer function is investigated. Two sources of the spread in “mono-dispersed” particle size distributions are discussed: (a) spread due to the triangular DMA transfer function, and (b) spread in the calibration particle size. The APM response function is calculated numerically with parabolic flow through the APM and diffusion broadening. As expected from theory, the calculated APM response function and measured data followed a similar trend with respect to APM voltage. However, the theoretical APM transfer function is narrower than the measured APM response.  相似文献   

3.
Nanosized silica size standards produced with a sol–gel synthesis process were evaluated for particle size, effective density, and refractive index in this study. Particle size and effective density measurements were conducted following protocol from the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. Particle sizes were measured via electrical mobility analysis using a differential mobility analyzer (DMA) at sheath flow rates (Qsh) of 3.0 and 6.0 L/min and a constant aerosol flow rate (Qa) of 0.3 L/min. The measured mean and mode diameters agreed well with the labeled sizes in the size range 40–200 nm, with differences ranging from 0.03% to 0.8%, well within the labeled expanded uncertainties (95% confidence intervals) of 1.8%–2.2%. The coefficient of variation (CV) of the size distribution was 0.012–0.027 for 40–200 nm. Particle sizes measured for 20 nm and 30 nm standards showed size differences with respect to the certified sizes of 1.7% and 8.3% at Qsh = 6.0 L/min, but the size distributions were narrow, with CV = 0.047–0.064. The average effective density for the range 40–200 nm measured with an aerosol particle mass analyzer (APM) was 1.9 g/cm3. The real component of the refractive index measured with an optical particle counter (OPC) was 1.41 at a wavelength of 633 nm. All properties (size, effective density, and refractive index) were stable and could be measured with good repeatability. From these evaluations, it was found that the nanosized silica size standards have good characteristics for use as size standards and constitute a feasible alternative to PSL particles.

© 2017 American Association for Aerosol Research  相似文献   


4.
Abstract

The Spider differential mobility analyzer (DMA) is a novel, miniaturized radial DMA developed to provide size classification in the 10–500?nm range for applications requiring high portability and time resolution. Its external dimensions are ~12?cm in diameter by 6?cm in height (excluding tubing); it weighs ~350?g, and is designed to operate at 0.6–1.5?L/min sheath and 0.3?L/min sample flowrates. It features a new sample inlet geometry that is designed to produce a uniform azimuthal particle distribution at the entrance of the classifier, optimized sample/sheath flow streams introduction in the classifier to minimize particle delays, and extension of the electric field interaction volume for ~30% enhanced dynamic range. Based on three-dimensional finite element simulations of flows, electric fields, and particle trajectories, we demonstrate that the Spider DMA transfer functions can be predicted with high fidelity using a parameterized fit based on the Stolzenburg semi-analytical model. Experimental characterization of the instrument response with size-selected particles confirmed close agreement with model prediction; mobility size response is linear over three orders of magnitude in mobility span. Electrical ground shielding of the external surfaces of the DMA has been found to be necessary to avoid particle losses associated with field effects as the high voltage operating limit is approached. The mean deviation between the reference size of polystyrene latex spheres and the Spider DMA measurement is less than 2%, corroborating its high sizing precision and potential for high quality size distribution measurements.

Copyright © 2019 American Association for Aerosol Research  相似文献   

5.
Aerosol instrument characterization and verification for nanometer-sized particles requires well-established generation and classification instruments. A precise size selection of sub-3-nm charged aerosol particles requires a differential mobility analyzer (DMA), specially designed for the sub-3-nm size range. In this study, a Herrmann-type high-resolution DMA developed at Yale University was characterized in various operation conditions. A relation between sheath flow rate and tetraheptylammonium ion (C28H60N+, THA+, 1.47 nm, mobility equivalent diameter) was established. The maximum particle size that the DMA was able to classify was 2.9 nm with the highest sheath flow rate of 1427 liters per minute (Lpm), and 6.5 nm with the lowest stable sheath flow rate of 215 Lpm, restricted by the maximum and minimum flow rates provided by our blower. Resolution and transmission of DMA are reported for tetrapropylammonium (C12H28N+, TPA+, 1.16 nm), THA+, and THA2Br+ (1.78 nm) ions measured with two different central electrodes and five different sheath flow rates. The transmission varied between 0.01 and 0.22, and the resolution varied between 10.8 and 51.9, depending on the operation conditions.

Copyright © 2016 American Association for Aerosol Research  相似文献   


6.
Computational fluid dynamics (CFD) simulations were conducted in a model of the complete nasal passages of an adult male Sprague-Dawley rat to predict regional deposition patterns of inhaled particles in the size range of 1 nm to 10 μm. Steady-state inspiratory airflow rates of 185, 369, and 738 ml/min (equal to 50%, 100%, and 200% of the estimated minute volume during resting breathing) were simulated using Fluent?. The Lagrangian particle tracking method was used to calculate trajectories of individual particles that were passively released from the nostrils. Computational predictions of total nasal deposition compared well with experimental data from the literature when deposition fractions were plotted against the Stokes and Peclet numbers for micro- and nanoparticles, respectively. Regional deposition was assessed by computing deposition efficiency curves for major nasal epithelial cell types. For micrometer particles, maximum olfactory deposition was 27% and occurred at the lowest flow rate with a particle diameter of 7 μm. Maximum deposition on mucus-coated non-olfactory epithelium was 27% for 3.25 μm particles at the highest flow rate. For submicrometer particles, olfactory deposition reached a maximum of 20% with a particle size of 5 nm at the highest flow rate, whereas deposition on mucus-coated non-olfactory epithelium reached a peak of approximately 60% for 1–4 nm particles at all flow rates. These simulations show that regional particle deposition patterns are highly dependent on particle size and flow rate, indicating the importance of accurate quantification of deposition in the rat for extrapolation of results to humans.  相似文献   

7.
《分离科学与技术》2012,47(13):3476-3493
Abstract

A unipolar charger containing multiple discharging wires in a tube (inner diameter: 50 mm) was developed and tested in order to increase the aerosol flow rate and the charging efficiency of nanoparticles. Four gold wires of 25 µm in diameter and 15 mm in length were used as the discharging electrodes to generate positive ions (Ni) from 2.72 × 108 ions/cc to 3.87 × 109 ions/cc in concentration at the discharging voltage of + 4.0 ~ + 10 KV. Monodisperse NaCl particles of 10 ~ 50 nm in diameter were used to test the charging efficiency and the particle loss of charged particles with different aerosol flow rates, corona voltages and sheath flow rates. The sheath air near the tube wall was found to increase the extrinsic charging efficiency, and the highest efficiency was obtained at + 6.0 KV discharging voltage, 10 L/min aerosol flow rate and 9 L/min sheath flow rate. The extrinsic charging efficiency increased from 10.6% to 74.2% when the particle diameter was increased from 10 to 50 nm. The TDMA (tandem differential mobility analyzer) method was used to determine the charge distribution and the mean charge per particle and it was found that the Fuchs charging theory corrected for the extrinsic charging efficiency matched with the experimental data very well.  相似文献   

8.
We describe development of a portable aerosol mobility spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5×22.5×15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution in approximately 1–2 min. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments. Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurement of ultrafine and nanoparticle aerosol.  相似文献   

9.
A Faraday cup aerosol electrometer based electrical aerosol instrument calibration setup from nanometers up to micrometers has been designed, constructed, and characterized. The set-up utilizes singly charged seed particles, which are grown to the desired size by condensation of diethylhexyl sebacate. The calibration particle size is further selected with a Differential Mobility Analyzer (DMA). For micrometer sizes, a large DMA was designed, constructed, and characterized. The DMA electrical mobility resolution was found to be 7.95 for 20?L/min sheath and 2?L/min sample flows. The calibration is based on comparing the instrument’s response against the concentration measured with a reference Faraday cup aerosol electrometer. The set-up produces relatively high concentrations in the micrometer size range (more than 2500 1/cm3 at 5.3?µm). A low bias flow mixing and splitting between the reference and the instrument was constructed from a modified, large-sized mixer and a four-port flow splitter. It was characterized at different flow rates and as a function of the particle size. Using two of the four outlet ports at equal 1.5?L/min flow rates, the particle concentration bias of the flow splitting was found to be less than ±1% in the size range of 3.6?nm–5.3?µm. The developed calibration set-up was used to define the detection efficiency of a condensation particle counter from 3.6?nm to 5.3?µm with an expanded measurement uncertainty (k?=?2) of less than 4% over the entire size range and less than 2% for most of the measurement points.

Copyright © 2018 American Association for Aerosol Research  相似文献   

10.
We designed a thermal precipitator in a cylindrical configuration with a size-selective inlet, and investigated its performance in experiments using differential mobility analyzer (DMA)-classified particles of sodium chloride (NaCl) and polystyrene latex (PSL). Our investigation was performed in two parts: (1) using the size-selective inlet to determine the best inlet-to-wall distance for optimal impaction of 1 μm particles; (2) using a simple inlet tube to measure particle collection via thermophoresis over a size range from 40 nm to 1000 nm. The results showed that the inlet had a particle cut-off curve, with a 50% particle cut-off Stokes number of 0.238, resulting in removing particles with sizes larger than 1 μm at an aerosol flow rate of 1.5 lpm. The thermophoretic particle collection efficiency in the prototype was measured without the size-selective inlet installed. The size dependence of the collection efficiency was negligible for particles with diameters ≤300 nm and became noticeable for those with diameters >300 nm. An analytical model was further developed to estimate the particle collection efficiency due to thermophoresis of the prototype under various aerosol flow rates and temperature gradients. For particles with diameters less than 400 nm, reasonable agreement was obtained between the measured data and the collection efficiency calculated from the developed analytical model. It was further concluded that the derived formula for the calculation of thermophoretic particle collection efficiency could serve as the backbone for future design of thermal precipitators in any configuration, when combined with the proper formula for the dimensionless thermophoretic particle velocity.

Copyright 2012 American Association for Aerosol Research  相似文献   

11.
The resolution of the radial differential mobility analyzer (radial DMA) for particles in 3–60 nm diameter range is probed through tandem radial DMA measurements employing identical radial DMAs. The observed broadening of the range of transmitted particles with decreasing particle Peclet number was shown to be consistent with Stolzenburg's (1988, Ph.D. Thesis, University of Minnesota) model of diffusion broadening of the transfer function, although the broadening was somewhat greater than predicted. A similar, but smaller, deviation is seen in Stolzenburg's data obtained using a cylindrical DMA. The enhanced broadening is thought to result from flow disturbances within the DMA. Diffusional deposition of particles in the radial DMA for two different sheath flow rates correlated well with Pe−2/3, while electrophoretic particle losses in the transition from high voltage at the outlet of the DMA to grounded tubing are shown to be independent of the particle Peclet number. The latter effect is, however, small for the radial DMA. Consistent with observations previously made using cylindrical DMAs, the voltage corresponding to the peak in the number concentration is slightly higher for the second DMA than for the first one. This apparent decrease in mobility correlates with Pe−1.  相似文献   

12.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range is developed. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. By measuring particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobility analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. However, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.

Copyright © 2017 American Association for Aerosol Research  相似文献   


13.
This article demonstrates the feasibility of scaling-up the technique for particle size selection in the gas phase based on differential mobility analysis. Nano-DMAs used to select the particle size in processes for the synthesis of nanomaterials in the laboratory operate at aerosol flow rates of a few liters per minute. A new DMA capable of classifying nanoparticles of up to 30 nm in size at aerosol flow rates as high as 100 l· min ?1 will be presented (HF-DMA). A major advantage of the HF-DMA over current nano-DMAs covering the same particle size is that its resolution is almost unaffected by Brownian diffusion for particles as small as 3 nm. Monodisperse nanoparticles in the 5 to 25 nm size range have been produced at flow rates of up to 90 l· min ?1 . The spread in particle size and the particle number concentration were studied with respect to their dependency on the flow rates in the HF-DMA. The measurements reflect the behavior predicted by the theory. The HF-DMA makes it possible to deliver nanoparticles of a well-defined size at yields two orders of magnitude higher than with current nano-DMAs.  相似文献   

14.

The hygroscopic behavior of Pasadena, CA aerosol was continuously measured from August 15 to September 15, 1999 using a tandem differential mobility analyzer. Two dry particle sizes were sampled, 50 nm and 150 nm in diameter; humidification of the dry aerosol was carried out at 89% relative humidity. Complex growth patterns were observed for both size modes, with aerosol distributions splitting from a single mode at times to more than 6 modes. Diurnal profiles for the observed multiple peaks were noted, with the greatest number of measurable growth modes being found during the late night and predawn hours for 50 nm particles. For 150 nm particles, more modes were present during the afternoon hours, with the humidified aerosol becoming bimodal during the late night/early morning hours. Growth factors, defined as the ratio of humidified particle diameter (at 89%) to dry diameter, were determined for modes with significant number concentrations. Average growth factors over the sampling period for the 2 particle sizes ranged from 1.0 to 1.6. Hygroscopic growth increased in the latter half of the sampling period when forest fires were present. In short, treating this complex urban aerosol as a combination of "less" and "more" hygroscopic fractions is an oversimplification.  相似文献   

15.
Abstract

A differential mobility analyzer for high-mobility resolution (1/FWHM~30) classification of 1–67?nm particles is designed to analyze viral particles. Inner and outer electrode radii of 1.01 and 2?cm (at the outlet slit) and a 11.6?cm long column achieve this range at a sheath gas flow (Q) and aerosol flow (q) of 30 and 1?L/min. Turbulent transition potentially resulting from this substantial length combined with high sheath gas flow rates (Q~1000 Lit/min) required to classify 1?nm particles is avoided by stabilizing the flow via a continuous acceleration with a conical inner electrode (1° half-angle). High axisymmetry of the aerosol flow as it joins the sheath gas is achieved by injecting it through a circularizer ring with 24 symmetrically spaced orifices. The sheath flow is laminarized with two pre-laminarization schemes, three laminarization screens, and an inlet trumpet with an area ~3 times the analyzer channel throat area. The instrument is tested with singly charged monomobile cluster ions produced by a bipolar electrospray source. A resolving power of 29 is measured at the highest flow rate reached, with a trend towards even higher resolution if either Q or the monomobile particle size could be increased. This performance indicates that the electrode concentricity is excellent and the flow highly stable. Tests carried out at limited resolution (set below 16 by a protein test aerosol) with the modest Q/q~30 values required to classify 70?nm particles indicate that the DMA response is close to ideal at Q?=?151, 110, and 47 Lit/min.

Copyright © 2019 American Association for Aerosol Research  相似文献   

16.
This article presents the development and evaluation of a very compact facility for exposing humans to concentrated ambient ultrafine particles (da < 0.15 μm). The human ultrafine particle concentrator (UFPC) operates at an intake flow rate of 1200 liters per minute (LPM). The concentrator is preceded by an ultrafine impactor which separates the accumulation mode from ultrafine mode particles under a very low pressure drop (1.5 kPa), a feature that is essential in enabling human inhalation studies of ultrafine concentrated ambient particulates (CAP). A key feature of the UFPC is a new cooling system, consisting of a programmable refrigerated circulator, which produces the supersaturation that is necessary to grow ultrafine PM to supermicrometer sizes so that they can be concentrated by means of conventional virtual impaction. The new cooling system allows for entirely automated operation of the UFPC. The UFPC was characterized in field experiments, in which the concentration enrichment of ultrafine particles was determined based on their number and mass concentration as well as on chemical composition including elemental carbon (EC), inorganic ions (sulfate and nitrate), and polycyclic aromatic hydrocarbons (PAH). Tests were conducted at minor-to-total flow ratios varying from 2.5–5% (hence at minor flow rates between 30–60 LPM). Measurements with the scanning mobility particle sizer (SMPS) showed a near-ideal increase in number concentrations (corresponding to the ratio of total-to-minor flow rate) of ultrafine particles after enrichment. The concentration enrichment was uniform across the entire particle diameter range of 15–660 nm. Similar results were obtained for EC and PAH concentrations (measured by an Aethalometer). Time-integrated filter-based tests, conducted to characterize the system for ultrafine PM mass and inorganic ion concentrations showed that the average enrichment factor was very close to the ideal values, indicating near-perfect collection efficiency with minimal particle losses.  相似文献   

17.
The counting efficiency of the TSI model 3020 condensation nucleus counter (CNC) was determined as a function of aerosol flow rate and trigger level using aerosols of known size and an aerosol electrometer. When the aerosol flow rate dropped from 300 to 200 mL/min, counting efficiencies increased significantly in the single-particle counting mode for particles with diameter < 20 nm while those for larger particles remained constant. However, the photometric mode counting efficiency for particles with diameter > 20 nm increased and exceeded unity. When the aerosol flow rate was reduced to 100 mL/min, the counting efficiencies for both counting modes decreased regardless of particle size. Varying the trigger level of the CNC did not influence the photometric mode counting efficiency. However, the counting efficiency of the single-particle counting mode increased with decreasing trigger level, especially for particles < 20 nm in diameter. Characteristics for individual instruments need to be measured because counting efficiencies of two CNCs with the same trigger level and flow rate were not identical.  相似文献   

18.
Granular filtration has been widely used for liquid filtration and hot gas filtration, but less is known for the filtration of airborne particles, especially the ultrafine ones, at the room conditions. A cylindrical packed bed was designed and tested for the filtration of particles in the range of about 10 nm to 15 µm in diameter at different configurations and kinetic conditions. Three sizes of uniform glass beads (2, 4, and 6 mm in diameter) were tested as the filtration media each at three media thicknesses (H = 2.5, 7.6, and 12.7 cm), and at two airflow rates (50 and 65 liters per minute). The filtration efficiencies were the lowest for particles between 0.1 and 1 µm in diameter. The particle filtration efficiency decreased with the increase in the granule size and the airflow rate, but a thicker bed corresponded to higher filtration efficiency. The experimental results showed much higher efficiency than existing models can predict, therefore, an empirical model using least square method is reported.  相似文献   

19.
A multi-channel differential mobility analyzer (MCDMA) or aerosol spectrometer is widely used for classifying and measuring nanometer aerosol particles in the size range from 1 nm to 1 μm because of its better time response than a typical differential mobility analyzer. In the present study, the effect of Brownian diffusion on electrical mobility classification and trajectory of nanometer aerosol particles in an electrical mobility spectrometer developed at Chiang Mai University has been analytically investigated. Th Brownian diffusion of particles inside the spectrometer increased with decreasing particle size and flow rates of aerosol and clean sheath air, and with increasing inner electrode voltage, and also decreased with decreasing operating pressure. The particle trajectories considering Brownian diffusion motion inside the spectrometer were found to be broader than those under no Brownian diffusion. Smaller particles were found to have higher degree of broadening of trajectory than the larger particles. Brownian diffusion effect was found to be significant for particles smaller than 10 nm.  相似文献   

20.
A solid particle number limit was applied to the European legislation for diesel vehicles in 2011. Extension to gasoline direct injection vehicles raised concerns because many studies found particles below the lower size limit of the method (23 nm). Here we investigated experimentally the feasibility of lowering this size. A nano condensation nucleus counter system (nCNC) (d50% = 1.3 nm) was used in parallel with condensation particle counters (CPCs) (d50% = 3 nm, 10 nm and 23 nm) at various sampling systems based on ejector or rotating disk diluters and having thermal pre-treatment systems consisting of evaporation tubes or catalytic strippers. An engine exhaust particle sizer (EEPS) measured the particle size distributions. Depending on the losses and thermal pre-treatment of the sampling system, differences of up to 150% could be seen on the final detected particle concentrations when including the particles smaller than 23 nm in diameter. A volatile artefact as particles with diameters below 10 nm was at times observed during the cold start measurements of a 2-stroke moped. The diesel vehicles equipped with the Diesel Particulate Filter (DPF) had a low solid sub-23 nm particles fraction (<20%), the gasoline with direct injection vehicles had higher (35–50%), the gasoline vehicles with port fuel injection and the two mopeds (two and four-stroke) had the majority of particles below 23 nm. The size distributions peaked at 60–80 nm for the DPF equipped vehicles, at 40–90 nm for the gasoline vehicles with a separate nucleation mode peak at approximately 10 nm sometimes. Mopeds peaked at sizes below 50 nm when their aerosol was thermally pre-treated.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号