首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An Ultrafine Water-based Condensation Particle Counter (UWCPC), a Scanning Mobility Particle Sizer (SMPS) incorporating an UWCPC, and a Fast Mobility Particle Sizer (FMPS) were deployed to determine the number and size distribution of ultrafine particles. Comparisons of particle number concentrations measured by the UWCPC, SMPS, and FMPS were conducted to evaluate the performance of the two particle sizers using ambient particles as well as lab generated artificial particles. The SMPS number concentration was substantially lower than the FMPS (FMPS/SMPS = 1.56) measurements mainly due to the diffusion losses of particles in the SMPS. The diffusion loss corrected SMPS (C-SMPS) number concentration was on average ~ 15% higher than the FMPS data (FMPS/C-SMPS = 0.87). Good correlation between the C-SMPS and FMPS was also observed for the total particle number concentrations in the size range 6 nm to 100 nm measured at a road-side urban site (r2 = 0.91). However, the particle size distribution measured by the C-SMPS was quite different from the size distribution measured by the FMPS. An empirical correction factor for each size bin was obtained by comparing the FMPS data to size-segregated UWCPC number concentrations for atmospheric particles. The application of the correction factor to the FMPS data (C-FMPS) greatly improved the agreement of the C-SMPS and C-FMPS size distributions. The agreement of the total particle concentrations also improved to well within 10% (C-FMPS/C-SMPS = 0.95).  相似文献   

2.
We present information regarding the relative performance of five TSI particle sizing instruments when presented with several log-normally distributed particle populations that vary in terms of composition, concentration, and modal mean diameter (in the range of 10–100 nm) in a controlled laboratory environment. In experiments conducted with NaCl, NaNO3, and organic aerosols, across a total particle concentration suite ranging from approximately 1 × 104 cm?3 to 1 × 106 cm?3, total number concentrations of sub-100-nm diameter particles from four SMPS systems and an FMPS all fall within ±50% of each other (and generally are within ±30%). However, larger discrepancies are evident in the particle size distribution, particularly for the NaCl particles, with an SMPS operated with a water-based CPC exhibiting large negative bias in modal peak concentrations relative to the isobutanol-based SMPS systems and the FMPS. Much closer agreement is found for NaNO3 particles, although the SMPS systems tended to exhibit higher modal peak concentrations, and a slight shifting toward lower modal peak diameter than the FMPS.

Copyright 2014 American Association for Aerosol Research  相似文献   

3.
Mineral dust particles play a significant role in the Earth's radiative balance via direct interaction with solar radiation and indirectly through their ability to initiate cloud formation. Many field and laboratory studies utilize a differential mobility analyzer (DMA) for particle size selection. Here we evaluate the use of a DMA to size-segregate dry dispersed mineral dust particles. We examine the post-DMA size distribution using four different techniques: a scanning mobility particle sizer (SMPS) for mobility sizing, an optical particle sizer (OPS) for optical sizing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument for vacuum aerodynamic sizing, and electron microscopy (EM) for geometric sizing. While the SMPS measured a narrow mobility size distribution at the DMA-selected diameter, the OPS, PALMS, and EM in most cases showed broader distributions and a smaller mode size than that selected by the DMA. These techniques also observed super-micrometer particles, often extending beyond the upper size limit of a typical SMPS scan. Complicating analysis, particle shape factor (χ) was observed to be a function of mobility size, ranging from 1.3 at 500 nm to 3.1 at 1000 nm. We conclude that mobility size selection of mineral dust particles using a DMA most often does not yield particles of the desired physical size or surface area. We suggest that attempts to size-select from a broad distribution of non-spherical particles require an independent measurement downstream of the DMA to verify the actual selected size.

Copyright 2015 American Association for Aerosol Research  相似文献   

4.
5.
Fast-sizing spectrometers, such as the TSI Engine Exhaust Particle Sizer (EEPS), have been widely used to measure transient particle size distributions of vehicle exhaust. Recently, size distributions measured during different test cycles have begun to be used for calculating suspended particulate mass; however, several recent evaluations have shown some deficiencies in this approach and discrepancies relative to the gravimetric reference method. The EEPS converts electrical charge carried by particles into size distributions based on mobility classification and a specific calibration, and TSI recently released a matrix optimized for vehicle emissions as described by Wang et al. (Submitteda). This study evaluates the performance of the new matrix (soot matrix) relative to the original matrix (default matrix) and reference size distributions measured by a scanning mobility particle sizer (SMPS). Steady-state particle size distributions were generated from the following five sources to evaluate exhaust particulates with various morphologies estimated by mass-mobility scaling exponent: (1) A diesel generator operating on ultralow sulfur diesel, (2) a diesel generator operating on biodiesel, (3) a gasoline direct-injection vehicle operating at two speeds, (4) a conventional port-fuel injection gasoline vehicle, and (4) a light-duty diesel (LDD) vehicle equipped with a diesel particulate filter. Generally, the new soot matrix achieved much better agreement with the SMPS reference for particles smaller than 30 nm and larger than 100 nm, and also broadened the accumulation mode distribution that was previously too narrow using the default matrix. However, EEPS distributions still did not agree with SMPS reference measurements when challenged by a strong nucleation mode during high-load operation of the LDD vehicle. This work quantifies the range of accuracy that can be expected when measuring particle size distribution, number concentration, and integrated particle mass of vehicle emissions when using the new static calibration derived based on the properties of classical diesel soot.

Copyright 2015 American Association for Aerosol Research  相似文献   

6.
The direct transfer of flame-synthesized aerosols of silica nanoparticles into aqueous suspensions is investigated. Silica nanoparticle aerosols with production rates of 0.5 g/h and different mean diameters and degrees of agglomeration are transferred into liquid suspensions by means of a novel wet electrostatic precipitator. Particle collection efficiencies above 99.999% were measured. The influence of the transfer on the particle size distribution was investigated by comparison of aerosol and suspensions size measurements. Aerosol sizes were measured with the scanning mobility particle sizer (SMPS), and suspension size measurements were conducted by dynamic light scattering (DLS) and by SMPS measurements of the aerosolized suspension employing a novel nebulizer. Depending on the aerosol and stabilization conditions, particle transfer with nearly no influence on the particle size distribution is possible. Suspensions generated from the same particle aerosol by direct transfer and by sonication of the respective powder were compared. In contrast to the direct transfer, the aerosol particle size distribution could not be restored by ultrasonication.

Copyright © 2015 American Association for Aerosol Research  相似文献   

7.

Atmospheric sampling was conducted at a rural site near Egbert, about 70 km north of Toronto, Ontario, Canada from March 27 to May 8, 2003 to characterize the physical and chemical properties of the ambient aerosol in near real-time. The instrumentation included a tapered element oscillating microbalance (TEOM), an ultrafine condensation particle counter (UCPC), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), an aerosol mass spectrometer (AMS), and a particulate nitrate monitor (R&P 8400N) for aerosol measurements. Gas-phase non-methane hydrocarbon compounds (NMHCs) were measured by gas chromatograph-flame ionization detection (GC-FID). Filter samples were also collected for analysis of inorganic ions by ion chromatography (IC). Aerosol properties varied considerably depending upon meteorological conditions and airmass histories. For example, urban and industrial emissions advected from the south strongly influenced the site occasionally, resulting in higher particulate mass with the higher fractions of nitrate and organics. Cleaner northwesterly winds carried aerosols with relatively higher fractions of organics and sulfate. The AMS derived mass size distributions showed that the inorganic species in the particles with vacuum aerodynamic diameters between about 60 nm and 600 nm had mass modal vacuum aerodynamic diameters around 400–500 nm. The particulate organics often exhibited two modes at about 100 nm and 425 nm, more noticeable during fresh pollution events. The small organic mode was well correlated with gas-phase nonmethane hydrocarbons such as ethylbenzene, toluene, and propene, suggesting that the likely sources of small organic particles were combustion related emissions. The particulate nitrate exhibited a diurnal variation with higher concentrations during dark hours and minima in the afternoon. Particulate sulfate and organics showed evidence of photochemical processing with higher levels of sulfate and oxygenated organics in the afternoon. Reasonable agreement among all of the co-located measurements is found, provided the upper size limit of the AMS is considered.  相似文献   

8.
A 405 nm diode laser-based on-line bioaerosol detector, BioScout, was tested and compared with the Ultraviolet Aerodynamic Particle Sizer (UVAPS). Both instruments are based on laser-induced fluorescence of particles. Only a fraction of microbial particles produce enough fluorescence light to be detected by the instruments. This fluorescent particle fraction (FPF) is aerosol and instrument specific. The FPF values for common bacterial and fungal spores and biochemical particles were experimentally determined for both instruments. The BioScout exhibited higher FPF values for all the test aerosols except coenzyme NADH. The difference was higher for smaller particles. The FPF values of fungal spores and bacteria varied between 0.34 to 0.77 and 0.13 to 0.54 for the BioScout and the UVAPS, respectively. The results indicate that the 405 nm diode laser is a useful excitation source for fluorescence-based real-time detection of microbial aerosols. The FPF results of this study can be utilized to estimate the actual concentrations of bacterial and fungal spores in fluorescence-based ambient measurements.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
The Aerodynamic Aerosol Classifier (AAC) is a novel instrument that selects aerosol particles based on their relaxation time or aerodynamic diameter. Additional theory and characterization is required to allow the AAC to accurately measure an aerosol’s aerodynamic size distribution by stepping while connected to a particle counter (such as a Condensation Particle Counter, CPC). To achieve this goal, this study characterized the AAC transfer function (from 32 nm to 3 μm) using tandem AACs and comparing the experimental results to the theoretical tandem deconvolution. These results show that the AAC transmission efficiency is 2.6–5.1 times higher than a combined Krypton-85 radioactive neutralizer and Differential Mobility Analyzer (DMA), as the AAC classifies particles independent of their charge state. However, the AAC transfer function is 1.3–1.9 times broader than predicted by theory. Using this characterized transfer function, the theory to measure an aerosol’s aerodynamic size distribution using an AAC and particle counter was developed. The transfer function characterization and stepping deconvolution were validated by comparing the size distribution measured with an AAC-CPC system against parallel measurements taken with a Scanning Mobility Particle Sizer (SMPS), CPC, and Electrical Low Pressure Impactor (ELPI). The effects of changing AAC classifier conditions on the particle selected were also investigated and found to be small (<1.5%) within its operating range.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
Design and theory of a new compact ultrafine particle sizing instrument, called the miniature electrical-mobility aerosol spectrometer (MEAS), was recently introduced [Ranjan, M., & Dhaniyala, S. (2007). A new miniature electrical spectrometer: Theory and design. Journal of Aerosol Science, 39, 950–963]. In the MEAS, electrostatic precipitation technique is used for both generation of sheath flow and classification of particles based on their electrical mobility. An electrometer-array, connected to the collection electrodes in the classifier section, is used to measure the number of particles collected in the different mobility channels, and these data are inverted using MEAS transfer functions to obtain particle number size distributions. Design of a prototype MEAS and the experimental approach to validate the performance of the individual components of the instrument are presented. Particle size distributions obtained from MEAS measurements compare well with those obtained using a scanning mobility particle sizer (SMPS; TSI 3936), validating theoretical calculations of instrument transfer functions. The operational limits of MEAS are determined from the calculation of error in the inverted size distribution as a function of total particle concentration. This analysis suggests that the designed MEAS can be used for applications such as personal and ambient monitoring under conditions of moderate to high particle concentrations.  相似文献   

11.
The number concentration and size-resolved properties of acidic ultrafine particles have been observed to more closely associate with adverse health effects than do indices of total particulate mass. However, no reliable measurement techniques are currently available to quantify the number concentration and the size distribution of ambient acidic ultrafine particles. In this study, a method with the use of iron nanofilm detectors for enumeration and size measurement of acid aerosols is developed and refined. Standard sulfuric acid (H2SO4) or ammonium hydrogen sulfate (NH4HSO4) droplets and sulfuric acid-coated particles were generated and deposited on the detectors causing reaction spots. The dimensions of the reaction spots were examined with Atomic Force Microscopy (AFM) to establish the correlations between the diameter of the particle and the size of the reaction spot. To validate this method, field measurements were conducted from September 06 to November 30, 2010, at Tai Mo Shan in Hong Kong. The results indicated that the particle number concentrations obtained from the AFM scanning of the exposed detectors via scanning mobility particle sizer (SMPS) and electrostatic precipitator (ESP) collection were comparable to those derived from the SMPS + CPC (condensation particle counter) measurements (p > 0.05). The average geometric mean diameter of particles at peak measured by the SMPS + CPC and the detectors scanned by the AFM was 52.3 ± 6.9 nm and 51.9 ± 3.1 nm, respectively, showing good agreement. It is suggested that the iron nanofilm detectors could be a reliable tool for the measurement and analysis of acidic particles in the atmosphere.

Copyright 2012 American Association for Aerosol Research  相似文献   

12.
Large inhalable particles are present in the workplace, yet few instruments exist to count and size such particles in situ. Inhalable-aerosol exposure can be evaluated using mass-based samplers such as the IOM or Button sampler, but these devices do not provide information on particle size distributions. Size-resolved samplers such as cascade impactors or the Aerodynamic Particle Sizer are limited to particle sizes <20 μm due to difficulties with particle aspiration and transmission losses. This work describes the development of two samplers capable of measuring the concentration and size distribution of airborne particles from 20 to 100 μm in aerodynamic diameter. One device is based on the principles of an upflow elutriator, whereas the other eliminates the potentially adverse effects of an upward-facing jet to separate particles from a quiescent airstream. Analytical models and computational fluid dynamics simulations were used to predict the performance of the two samplers. Sampling efficiencies of these devices were tested in a calm-air chamber with polydisperse, fluorescent microspheres (10–100 μm). Epifluorescent microscopy of settled dust was used to determine reference particle counts and sizes. Both devices are capable of size-selective sampling; however, the second sampler produced higher sampling efficiencies and sharper cut points compared to the simpler elutriator design. Experimental sampling efficiencies for both samplers showed good agreement with computational and analytical solutions. This work suggests that these devices can size-segregate inhalable aerosols in quiescent environments.

Copyright © 2015 American Association for Aerosol Research  相似文献   

13.
Real time secondary organic aerosol (SOA) density evolution for m-xylene photo-oxidation and α-pinene ozonolysis was obtained using an Aerosol Particle Mass Analyzer (APM)/Scanning Mobility Particle Spectrometer (SMPS) setup, which has been modified to achieve higher transmission of particles and improved sampling frequency. The aerosol density of SOA generated from α-pinene ozonolysis was found to be 1.24 ± 0.03 g/cm3 while the aerosol generated from m-xylene photo-oxidation was determined to be 1.35 ± 0.03 g/cm3. These results confirm the measurement approach from a combined SMPS and Aerodyne Aerosol Mass Spectrometer (AMS) system and are found to be within good agreement with the effective density measurements.  相似文献   

14.
Abstract

A scanning mobility particle sizer (SMPS) is one of the most widely used instruments to obtain size distribution for atmospheric particles. In an SMPS measurement, a voltage scanning process on a differential mobility analyzer is required, and it typically takes 30?s to 120?s to obtain one entire size distribution. A size distribution obtained by an SMPS measurement might have significant deviations from actual values due to the scanning process when the measured particle concentrations change over time. In this study, we introduce an analytical approach for estimating particle size distribution under exponentially decaying and growing particle concentrations. The analytical SMPS results are validated by performing experiments using exponentially decaying particle concentrations under the same conditions. Furthermore, the effects of a decay parameter, initial size distribution, and scan time are evaluated, and the deviations from actual (real or true) size distributions obtained by an exact solution are analyzed. Geometric mean diameters and standard deviations of the size distributions from SMPS results increase or decrease with exponentially decaying or growing concentrations, respectively, and total concentrations estimated by the analytical SMPS approach are significantly underestimated or overestimated compared to real total concentrations. While SMPS measurements have been widely employed in various applications such as atmospheric particle characterization in highly variable particle concentrations versus time, very few studies on the influence of changing concentrations on SMPS measurements have been conducted. Therefore, the introduced analytical approach and findings provide valuable insight into the importance of accurate SMPS measurements with changing particle concentrations.

Copyright © 2020 American Association for Aerosol Research  相似文献   

15.
The collection efficiency (CE) of the aerosol mass spectrometer (AMS) for chamber-generated secondary organic aerosol (SOA) at elevated mass concentrations (range: 19–207 μg m?3; average: 64 μg m?3) and under dry conditions was investigated by comparing AMS measurements to scanning mobility particle sizer (SMPS), Sunset semi-continuous carbon monitor (Sunset), and gravimetric filter measurements. While SMPS and Sunset measurements are consistent with gravimetric filter measurements throughout a series of reactions with varying parent hydrocarbon/oxidant combinations, AMS CE values were highly variable ranging from unity to <15%. The majority of mass discrepancy reflected by low CE values does not appear to be due to particle losses either in the aerodynamic lens system or in the vacuum chamber as the contributions of these mechanisms to CE are low and negligible, respectively. As a result, the largest contribution to CE in the case of chamber-generated SOA appears to be due to particle bounce at the vaporizer surface before volatilization, which is consistent with earlier studies that have investigated the CE of ambient and select laboratory-generated particles. CE values obtained throughout the series of reactions conducted here are also well correlated with the f 44/f 57 ratio, thereby indicating both that the composition of the organic fraction has an important impact on the CE of chamber-generated SOA and that this effect may be linked to the extent to which the organic fraction is oxidized.

Copyright 2013 American Association for Aerosol Research  相似文献   

16.
Researchers at the National Institute for Occupational Safety and Health (NIOSH) are developing methods for characterizing diesel particulate matter in mines. Introduction of novel engine and exhaust aftertreatment technologies in underground mines is changing the nature of diesel emissions, and metrics alternative to the traditional mass-based measurements are being investigated with respect to their ability to capture changes in the properties of diesel aerosols. The emphasis is given to metrics based on measurement of number and surface area concentrations, but analysis of collected particles using electron microscopy (EM) is also employed for detailed particle characterization. To collect samples for EM analysis at remote workplaces, including mining and manufacturing facilities, NIOSH is developing portable particle samplers capable of collecting airborne nano-scale particles. This paper describes the design, construction, and testing of a prototype thermophoretic precipitator (TP) particle sampler optimized for collection of particles in the size range of 1–300 nm. The device comprises heated and cooled metal plates separated by a 0.8 mm channel through which aerosol is drawn by a pump. It weighs about 2 kg, has a total footprint of 27 × 22 cm, and the collection plate size is approximately 4 × 8 cm. Low power consumption and enhanced portability were achieved by using moderate flow rates (50–150 cm3/min) and temperature gradients (10–50 K/mm with ΔT between 8 K and 40 K). The collection efficiency of the prototype, measured with a condensation particle counter using laboratory-generated polydisperse submicrometer NaCl aerosols, ranged from 14–99%, depending on temperature gradient and flow rate. Analysis of transmission electron microscopy images of samples collected with the TP confirmed that the size distributions of collected particles determined using EM are in good agreement with those determined using a Fast Mobility Particle Sizer.

Copyright 2012 American Association for Aerosol Research  相似文献   

17.
The effects of particulate matter on environment and public health have been widely studied in recent years. In spite of the presence of numerous studies about this topic there is no agreement on the relative importance of the particles' size and origin with respect to health effects among researchers. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. The most reliable method used in measuring particulate matter (PM) is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique, however, neglects the possibility to correlate short term intraday atmospheric parameter variations that can influence ambient particle concentration and size distribution as well as human activity patterns. Besides, a continuous method to determine PM concentrations through the measurement of the number size distribution is the system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this article, the evaluation of the uncertainty budget in measuring PM through the SMPS–APS system, as well as a metrological comparison with the gravimetric reference method in order to analyze the compatibility, was carried out and applied with reference to an experimental campaign developed in a rural site. This choice allowed to assume the hypothesis of spherical particle morphology. The average PM10, PM2.5, and PM1 uncertainties obtained for the SMPS–APS system are equal to 27%, 29%, and 31%, respectively. Here the principle influence parameter is the particle density that has to be directly measured with low uncertainty in order to reduce the PM uncertainty.  相似文献   

18.
Miniaturized detection systems for nanometer-sized airborne particles are in demand, for example in applications for onboard diagnostics downstream particulate filters in modern diesel engines. A soot sensor based on resistivity measurements was developed and characterized. This involved generation of soot particles using a quenched co-flow diffusion flame; depositing the particles onto a sensor substrate using thermophoresis and particle detection using a finger electrode structure, patterned on thermally oxidized silicon substrate. The generated soot particles were characterized using techniques including Scanning Mobility Particle Sizer for mobility size distributions, Differential Mobility Analyzer—Aerosol Particle Mass analyzer for the mass–mobility relationship, and Transmission Electron Microscopy for morphology. The generated particles were similar to particles from diesel engines in concentration, mobility size distribution, and mass fractal dimension. The primary particle size, effective density and organic mass fraction were slightly lower than values reported for diesel engines. The response measured with the sensors was largely dependent on particle mass concentration, but increased with increasing soot aggregate mobility size. Detection down to cumulative mass as small as 20–30 μg has been demonstrated. The detection limit can be improved by using a more sensitive resistance meter, modified deposition cell, larger flow rates of soot aerosol and modifying the sensor surface.  相似文献   

19.
The Scanning Mobility Particle Spectrometer (SMPS) is a key tool for measuring particle size distribution. The application of the instrument to obtain size distributions throughout a wide range of particle sizes for transient systems, such as motor vehicle emissions, has been limited by the time resolution of the SMPS. In this paper, we present a fast-SMPS (f-SMPS) that utilizes a Radial Differential Mobility Analyzer (rDMA) and a Wixing Condensation Particle Counter (mCPC). The combination of these two components allows for the acquisition of particle size distributions on the time scale of several seconds. The Instrument has an operating range of 5–98 nm and can obtain particle size distributions at rates of up to 0.4 Hz. This paper presents the initial construction and calibration of the instrument followed by its application to several sampling scenarios. Samples from the on-road testing of a heavy-duty diesel (HDD) vehicle demonstrate the utility of this instrument for momtor vehicle emissions measurements as size distributions can now be associated with discrete events taking piace during vehicle onroad operation. For instance, these data indicate the presence of a number peak at 15 nm during transient vehicle operation. Previous work indicates that these particles are associated with the loss of engine lubricating oil.  相似文献   

20.
Abstract

Particle deposition in the human respiratory tract is considered to have negative effects on human health. The lung deposited surface area (LDSA) is an important metric developed to assess the negative health effects of particles deposited in the alveolar region of the human respiratory tract. The measurement of the LDSA is frequently based on the detection of the electrical current carried by diffusion charged particles. Various conversion factors can be used to convert the electric current into LDSA concentration with relatively good accuracy up to the size about 300-600?nm. In this study, we introduce stage-specific LDSA conversion factors for electrical low pressure impactor (ELPI+) data, which enable accurate and real time LDSA concentration and LDSA size distribution measurements in the particle size range from 6?nm to 10?µm. This wide size range covers most of the alveolar deposition of particles, which has not been possible previously by electrical methods. Also, the conversion factors for tracheobronchial and head airways particle surface area deposition were determined, and the stage-specific conversion factors were compared with the single-factor data conversion method. Furthermore, the stage-specific calibration was tested against real-world particle size distributions by simulations and against laboratory-generated aerosols. Particles larger than 300?nm were observed to significantly affect the total LDSA concentration. Stage-specific conversion factors are especially required while measuring aerosols containing larger particles or when considering the surface area deposition in the tracheobronchial region and head airways. The method and the conversion factors introduced in this study can be used to monitor LDSA concentrations reliably in various environments containing particles in different size ranges.

Copyright © 2020 American Association for Aerosol Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号