首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A parallel plate differential mobility analyzer (DMA) having 100 independent current collectors is calibrated to relate the axial distances Ln between the inlet slit and the detector position to the particle mobility Z at given voltage difference V and sheath gas flow rate Q. Calibrating species are tetraheptylammonium bromide clusters (THABr) and polyethylene glycol (PEG35k, 5?nm in diameter), generated by a bipolar electrospray source, and purified in a cylindrical DMA. Gaussian fitting of the raw discrete mobility spectra in the form of ion current In versus collector position Ln , In (Ln ), yield the mean value Lo of the collector position maximizing the signal for a given ion. The many (Z,V,Lo ) triads obtained at given Q from many different DMA voltages and standard mobilities collapse into a single 1/(ZiVj ) vs Lo curve when slight adjustments are made to the Zi . For different flow rates, Q/(ZiVj ) vs. Lo curves collapse also, as long as the peaks are moderately narrow. However, for sufficiently small Q/Z, the THABr cluster peaks become broad, and the curves Q/(ZiVj ) vs. Lo cease to collapse precisely. In contrast, the data for PEG show that this behavior is not a low-Q (Reynolds number) effect from the growth of the two lateral boundary layers, but is rather due to the broad and non-Gaussian peak shapes obtained at low Q or high Z. The calibration is accordingly unaffected by the Reynolds number. This simplicity was unexpected, given the three-dimensional flow in this DMA with growing lateral boundary layers.

Copyright © 2020 American Association for Aerosol Research  相似文献   

2.
Differential mobility analyzers (DMAs) are widely used to determine the size of aerosol particles, and to probe their size-dependent physicochemical properties when two are employed in tandem. A limitation of tandem DMA (TDMA) systems is their long measuring cycle when the properties of more than one monodisperse population of particles need to be probed. In this work, we propose a simple modification of the classical cylindrical DMA by including three monodisperse-particle outlets in its central electrode (namely, the 3MO-DMA), with the objective of using it as the first DMA in TDMA systems for reducing their measuring cycle. The performance of the 3MO-DMA at different flow conditions was evaluated using laboratory-generated aerosol particles, and compared with theoretical predictions. The theory predicted accurately (i.e., within 3%) the geometric mean diameters of the three distinct populations, as well as the resolutions of the first and the third outlet, under all experimental conditions. For the second outlet, the resolution was 10% to 74% lower than that predicted theoretically depending on the sheath-to-aerosol flow ratio. Nevertheless, the geometric standard deviation of the monodisperse aerosol from all the outlets was less than 1.09, which is sufficient for using the 3MO-DMA designed and tested in this work as a first DMA to produce a monodisperse aerosol flow containing three distinct particle populations in TDMA systems.

Copyright © 2016 American Association for Aerosol Research  相似文献   


3.
The ability of atmospheric particles to absorb water has extensive climate, atmospheric chemistry, and health implications, and considerable effort has gone into determining relationships between particle composition and hygroscopicity. Parallel techniques, in which co-located composition and hygroscopicity measurements are combined to infer composition-hygroscopicity relationships, may not detect the influence of external mixtures. Previous in-line measurements have been limited to single-particle composition or a limited analyte range, and are often non-quantitative and/or offline. Here, we present for the first time in-series, online, quantitative hygroscopicity-composition measurements using a Brechtel Manufacturing, Inc. Hybrid Tandem Differential Mobility Analyzer and an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This technique is first verified using laboratory-generated external particle mixtures, then extended to ambient measurements at a seaside sampling side at the Hong Kong University of Science and Technology. The technique successfully separated laboratory-generated particles of differing hygroscopicities and showed promise for atmospheric particles, though high mass attenuation endemic to the HTDMA dual size selection limits application to environments with at least ~14–41 μg/m3 of particulate mass, depending on composition.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
Viscosity of atmospheric aerosol spans at least 15 orders of magnitude, from thin liquids to glassy solids, with possible concomitant impact on multiple processes of meteorological and/or climatological concern. Recently there has been interest in aerosol phase assessment techniques based upon dimer coalescence. Theoretical treatment suggests discernible reductions in dimer diameter begin when viscosity ~108 Pa·s and the dimer is spherical at ~105 Pa·s for submicron particles, or the middle range of the semisolid regime. A method using nanoparticle dimers synthesized by utilizing differential mobility analyzers of opposite polarity to produce monomers of opposite charge that subsequently undergo electrostatically mediated coagulation has been developed and is detailed in this work. This method was used to assess the aerosol phase state of several atmospherically relevant organic species and inorganic salts at relative humidity (RH) values ranging between 10% and 100%. Ammonium sulfate, monosodium α-ketoglutaric acid, sodium chloride, and sucrose all displayed RH-dependent phase state. These observed viscous transitions occurred at RH values less than existing deliquescence RH data, a result consistent with existing literature reports of RH-induced structural rearrangements. Fully coalesced and fully uncoalesced diameters could be fitted to single values, indicating that the presented technique is absolute. The method was also used to assess the phase state of dry sucrose aerosol at temperatures between 20°C and 70°C. A phase transition was noted at 63.7°C ± 4.4°C, near the glass transition temperature, suggesting the presented method may also be useful for probing phase responses to temperature perturbations.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
A differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. A DMC in the cylindrical configuration (i.e., constructed by axial aligning of the inner and outer cylinders) is typically included in the sizers. The knowledge of construction tolerance is required in the design of a cylindrical DMC. The numerical approach was applied in this study. Our study shows that the DMC transfer function deteriorated as the axial eccentricity was increased (i.e., the peak is reduced and the width at the half peak height is broaden). At high axial eccentricity, the transfer function peak would split into two. In addition to the flow parameters such as the sheath-to-aerosol flow rate ratio and total flow rate, the effect of geometrical parameters (i.e., the length and aspect ratio of the particle classification channel, and the ratio of outer-to-inner cylinder radii) on the transfer function of an eccentric DMC were also investigated. It is found that the classification length and the sheath-to-aerosol flow rate ratio have obvious impact on the transfer function of an eccentric DMC. Furthermore, the particle diffusivity reduced the effect of axial eccentricity on DMC transfer function, especially for particles with the sizes less than 10?nm.

Copyright © 2019 American Association for Aerosol Research  相似文献   


6.
The objective of this study is to investigate the particle effective density of aerosol measurements in a railway tunnel environment. Effective density can serve as a parameter when comparing and calibrating different aerosol measurements. It can also be used as a proxy parameter reflecting the source of particles. Effective density was determined using two different methods. Method one defined it by the ratio of mass concentration to apparent volume size distribution. Method two relied on a comparison of aerodynamic and mobility diameter size distribution measurements. The aerodynamic size range for method one was 0.006–10?µm, and for method two, it was 10–660?nm. Using the first method, a diurnal average value of about 1.87?g/cm3 was observed for the measurements with tapered element oscillating microbalance (TEOM) in tandem with aerodynamic particle sizer?+?scanning mobility particle sizer (SMPS), and 1.2?g/cm3 for the combination of TEOM with electrical low pressure impactor plus (ELPI+) in the presence of traffic. With method two, the effective density was 1.45?g/cm3 estimated from the size distribution measurements with ELPI?+?and fast mobility particle sizer (FMPS), and 1.35?g/cm3 from ELPI?+?in tandem with SMPS. With both calculation methods, the effective density varied for conditions with and without traffic, indicating different sources of particles. The proportion of particles with small sizes (10–660?nm) had a significant effect on the value of the effective density when no traffic was operating. The responses of different instruments to the railway particle measurements were also compared.

Copyright © 2018 The Authors. Published with license by Taylor &; Francis Group, LLC  相似文献   

7.
Abstract

A scanning mobility particle sizer (SMPS) is one of the most widely used instruments to obtain size distribution for atmospheric particles. In an SMPS measurement, a voltage scanning process on a differential mobility analyzer is required, and it typically takes 30?s to 120?s to obtain one entire size distribution. A size distribution obtained by an SMPS measurement might have significant deviations from actual values due to the scanning process when the measured particle concentrations change over time. In this study, we introduce an analytical approach for estimating particle size distribution under exponentially decaying and growing particle concentrations. The analytical SMPS results are validated by performing experiments using exponentially decaying particle concentrations under the same conditions. Furthermore, the effects of a decay parameter, initial size distribution, and scan time are evaluated, and the deviations from actual (real or true) size distributions obtained by an exact solution are analyzed. Geometric mean diameters and standard deviations of the size distributions from SMPS results increase or decrease with exponentially decaying or growing concentrations, respectively, and total concentrations estimated by the analytical SMPS approach are significantly underestimated or overestimated compared to real total concentrations. While SMPS measurements have been widely employed in various applications such as atmospheric particle characterization in highly variable particle concentrations versus time, very few studies on the influence of changing concentrations on SMPS measurements have been conducted. Therefore, the introduced analytical approach and findings provide valuable insight into the importance of accurate SMPS measurements with changing particle concentrations.

Copyright © 2020 American Association for Aerosol Research  相似文献   

8.
9.
Abstract

This article provides an overview of methods to evaluate transfer functions for the Couette centrifugal particle mass analyzer (CPMA) and aerosol particle mass analyzer (APM). The work first considers finite difference approaches to solving the partial differential equation governing particle motion, which represents an accurate but computationally-demanding approach to evaluating the transfer function. This is used as a baseline to compare to particle tracking methods, which have been shown to yield closed form expressions for the transfer function. In this work, we extend on previous treatments by presenting a generalized framework that allows us to consider a range of representations of the particle migration velocity. As a result, we derive new closed form expressions for the exact representation of the particle migration velocity under APM conditions and provide significant improvements in the accuracy of the transfer function for CPMA conditions. In the latter case, for a CPMA, particle migration effects dominate, which makes the transfer function easier to approximate. We also show that Taylor series approximations to the particle migration velocity should be taken about the centerline radius rather than the equilibrium radius as was done previously. We end by extending the particle tracking approach and derive new closed form expressions for the transfer function that include diffusion.

Copyright © 2019 American Association for Aerosol Research  相似文献   

10.
A quartz crystal microbalance (QCM) based instrument has been developed for real-time aerosol mass distribution measurement. It includes two key components: a six-stage QCM micro-orifice cascade impactor and a novel relative humidity (RH) conditioner. This instrument operates at a flow rate of 10 L·min?1 and measures the mass of the collected particles in six aerodynamic diameter channels between 45 nm and 2.5 μm. The RH conditioner ensures that the aerosol particles are collected at an RH between 40% and 65%, which is critical for eliminating particle bounce and for ensuring optimal particle coupling with the QCM. The nozzles of the impactors are clustered in the center of the nozzle plates. Therefore, particles are deposited on the central electrode of the QCM, where the mass calculated from first principles (i.e., Sauerbrey equation) agrees with the actual collected mass. The QCM response is linear up to around 130 μg for solid particles and up to around 2 μg for liquid particles. The collection efficiency curves of the QCM impactor stages were measured experimentally with monodisperse aerosols, and the results agree with the predictions of established impactor theory. This QCM-based instrument has also been tested with ambient aerosols with varying temperature and relative humidity. The aerosol distributions measured by this new instrument are in good agreement with simultaneous independent measurements carried out with a wide-range particle spectrometer (MSP Model 1000XP WPS).

Copyright © 2016 American Association for Aerosol Research  相似文献   

11.
Understanding transport characteristics of airborne nanotubes and nanofibers is important for assessing their fate in the respiratory system. Typically, diffusion and aerodynamic diameters capture key deposition mechanisms of near-spherical particles such as diffusion and impaction in the submicrometer size range. For nonspherical particles with high aspect ratios, such as aerosolized carbon nanotubes, these diameters can vary widely, requiring their independent measurement. The objective of this study was to develop an approach to provide approximate estimates of aerodynamic- and diffusion-equivalent diameters of airborne carbon nanotubes (CNTs) and carbon nanofibers (CNFs) using their morphological characteristics obtained from electron micrographs. The as-received CNT and CNF materials were aerosolized using different techniques such as dry dispersion and nebulization. Mobility and aerodynamic diameters of test aerosol were directly deduced from tandem measurement of particle mobility and mass. The same test aerosol was mobility-classified and subsequently collected on a microscopy grid for transmission electron microscopy (TEM) analysis. TEM micrographs were used to obtain projected area, maximum projected length, and two-dimensional (2-D) radius of gyration of test particles. Estimates of the aerodynamic diameter and the diffusion diameter were obtained by applying the fractal theory developed for aerosol agglomerates of primary spherical particles. After accounting for the particle dynamic shape factor, estimated aerodynamic diameters agreed with those from the direct measurements (using tandem mobility-mass technique) within 30–40% for the agglomerates with relatively open structures while the diffusion diameters agreed within 40–50%. The uncertainty of these estimates mainly depends on degree of overlapping structures in the microscopy image and nonuniformity in tube diameter. The approach could be useful in calculating approximate airborne properties from microscopy images of CNT and CNF agglomerates with relatively open structures.

This article not subject to US copyright law  相似文献   


12.
While there are several computational studies on differential mobility analyzers (DMA), there is none for high flow DMA to classify nanoparticles less than 3?nm. A specific design of a high flow DMA, a half mini DMA, is investigated to predict its performance through numerical modeling in the incompressible flow regime. The governing equations for flow field, electric field and aerosol transport are solved using COMSOL 5.3. The transfer function of the half mini DMA is compared with that of a nano DMA (TSI 3085). The results show that both the height of the transfer function and resolution (R) of the half mini DMA are much better than those of nano DMA in sub-2?nm particle size range. Finally, the transfer function of half mini DMA is evaluated for different values of aerosol flow rate to the sheath flow rate (q/Q). Comparison of the simulated transfer function with existing models from Knutson–Whitby and Stolzenburg is also elucidated. It is found that the former model overestimates the resolution; whereas the latter is close to the simulation results for q/Q above 0.067. This work provides a useful method to study the flow regimes and transfer function of a high flow DMA.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
We describe a new method for focusing and concentrating a stream of moving micron-sized aerosol particles in air. The focusing and concentrating process is carried out by the combined drag force and optical force that is generated by a double-layer co-axial nozzle and a focused doughnut-shaped hollow laser beam, respectively. This method should supply a new tool for aerosol science and related research.

Copyright © 2018 American Association for Aerosol Research  相似文献   


14.
Reactive uptake by ammonium (NH4+) salts is one of the major pathways for the gas-to-particle partitioning of alkyl amines. Recent studies using particles of individual ammonium salts and mixtures with hydrophilic organics have revealed that the degree of amine uptake depends on the phase state of ammonium salts, the particulate water contents and particle viscosity. The role of hydrophobic organic compounds, another important category of particulate organics commonly detected in the ambient atmosphere, in amine uptake remains unknown. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) particles coated with fresh or ozone-aged bulk oleic acid (OA) at 60%, 30%, and <5% relative humidities (RHs) using an electrodynamic balance coupled with Raman spectroscopy. OA and DMA were selected to represent hydrophobic organics and alkyl amines, respectively. Over 74% of the original NH4+ ions were displaced due to DMA uptake, except those conditioned at <5% RH. On the other hand, the fresh or aged bulk OA coating retarded DMA uptake by preventing the particle surface from effectively accommodating gaseous DMA molecules. Judging from the estimated DMA uptake coefficients, the retardation gradually intensified as the weight percentage of coating increased before leveling off, likely when the particle surface was completely covered by fresh or aged bulk OA. We propose that the accommodation of DMA on the particle coating is the rate-limiting step of DMA uptake. Intensive aging of the OA coating had little effect on the equilibrium particle-phase compositions but retarded DMA uptake.

© 2017 American Association for Aerosol Research  相似文献   


15.
Glycerol and propylene glycol mixtures are common carrier solutions in electronic cigarettes. Aerosols produced from these mixtures will evaporate quickly in a dry environment due to their high volatility. In a humid environment, such as the lungs, the kinetics of evaporation and hygroscopic growth determine the evolution of aerosol plume glycerol. Here, we apply a temperature and relative humidity-controlled hygroscopicity/volatility tandem differential mobility analyzer system to study the growth and evaporation kinetics of glycerol aerosol over a wide range of temperature, relative humidity, and residence times. Results show that at dry conditions glycerol aerosols evaporate within seconds at temperatures warmer than 20°C and that the accommodation coefficient of glycerol vapor on dry glycerol particles is 0.8. Under humidified conditions, the mutual depression of vapor pressures of the aqueous glycerol/water solution slows the glycerol evaporation rate consistent with thermodynamic and kinetic model predictions. Model calculations show that water vapor aided condensation of glycerol can occur at high relative humidity for glycerol vapor concentrations that result in glycerol particle evaporation under dry conditions. The combined results will help with constraining computational modules that model the evolution of glycerol-containing aerosols along a prescribed thermodynamic trajectory.

Copyright © 2016 American Association for Aerosol Research  相似文献   

16.
A new palm-sized optical PM2.5 sensor has been developed and its performance evaluated. The PM2.5 mass concentration was calculated from the distribution of light scattering intensity by considering the relationship between scattering intensity and particle size. The results of laboratory tests suggested that the sensor can detect particles with diameters as small as ~0.3 µm and can measure PM2.5mass concentrations as high as ~600 µg/m3. Year-round ambient observations were conducted at four urban and suburban sites in Fukuoka, Kadoma, Kasugai, and Tokyo, Japan. Daily averaged PM2.5 mass concentration data from our sensors were in good agreement with corresponding data from the collocated standard instrument at the Kadoma site, with slopes of 1.07–1.16 and correlation coefficients (R) of 0.90–0.91, and with those of the nearest observatories of the Ministry of the Environment of Japan, at 1.7–4.1 km away from our observation sites, with slopes of 0.97–1.23 and R of 0.89–0.95. Slightly greater slopes were observed in winter than in summer, except at Tokyo, which was possibly due to the photochemical formation of relatively small secondary particles. Under high relative humidity conditions (>70%), the sensor has a tendency to overestimate the PM2.5 mass concentrations compared to those measured by the standard instruments, except at Fukuoka, which is probably due to the hygroscopic growth of particles. This study demonstrates that the sensor can provide reasonable PM2.5 mass concentration data in urban and suburban environments and is applicable to studies on the environmental and health effects of PM2.5.

Copyright © 2018 American Association for Aerosol Research  相似文献   


17.
A very compact cascade impactor with 2 L/min sampling flow rate has been developed. Its dimensions are 8.5 cm L x 5.0 cm W x 11.4 cm H, and it weighs 0.27 kg, with ten impaction stages with aerodynamic cutpoints in the range of 60 nm to 9.6 μm. The top eight stages, collecting particles down to 170 nm in aerodynamic diameter, can be used as a stand-alone impactor with a portable, battery-powered pump. Particle collection efficiencies were obtained with two types of commonly used substrates, aluminum foil and glass fiber filters. Impactor cutpoints with aluminum foil substrates agree well with conventional impactor theory. The efficiency curves are sharp with minimum overlap between them. Thus, the compact impactor design does not compromise its performance, making it suitable for general purpose applications where a lower sampling flow rate provides adequate mass collection. With glass fiber filter substrates, impactor cutpoints are smaller and the efficiency curves are less steep, in particular for the last stages. Also, the collection efficiency curves do not drop to near zero at small Stokes numbers. Instead, excess particle collection efficiency of around 10% is observed for the top six stages, and becomes higher for the last four stages. This is due to the collection of particles by filtration as the impinging jets penetrate the filter substrate. Thus, using glass fiber filter substrates should generally be avoided due to the non-ideal effect on the impactor collection efficiency curves, especially for the last two stages.

Copyright © 2018 American Association for Aerosol Research  相似文献   


18.
An experimental study was carried out to investigate the formation process of airborne nanoparticles from tire tread. The formation of nanoparticles by volatilization of the tire tread was simulated in a reaction chamber. The number concentration of nanoparticles in the reaction chamber suddenly increased when the tire tread surface temperature reached above 160°C. The generated nanoparticles have a unimodal distribution and the number of nanoparticles increased as the heating rate increased. The geometric mean diameter and size distribution of the generated particles can be controlled by adjusting the cooling rate since the cooling rate is directly related to the growth of particles. From the morphological and elemental analyses, the main components of the tire nanoparticles were C, O, S, and Si and the particles had an irregular shape. Based on these observations, we concluded that the formation mechanism of nanoparticles from the tire tread was volatilization and condensation of the organic materials in the tire tread.

Copyright © 2017 American Association for Aerosol Research  相似文献   


19.
Steam collection devices collecting aerosol particles into liquid samples are frequently used to analyze water-soluble particulate material. The fate of water-insoluble components is often neglected. In this work, we show that fresh soot particles can be suspended into pure water using a steam collection device, the particle-into-liquid sampler (PILS, Weber et?al. 2001). The overall collection efficiency of freshly generated soot particles was found to be on the order of 20%. This shows that, depending on the analytic technique employed, the presence of insoluble, and/or hydrophobic particles in liquid samples from steam collection cannot be neglected.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


20.
The process of particle formation from evaporating droplets containing more than one solute was studied. Two-component microparticles were produced using a piezoceramic dispenser with an inner diameter of 30 µm. Initial droplets had a diameter in the range of 70–85 µm and contained sodium nitrate and potassium nitrate in different molar ratios of 30:70, 50:50, and 70:30, corresponding to weight ratios of 26.5:73.5, 45.7:54.3, and 66.2:33.8, in the form of aqueous solutions with initial concentrations of 1 or 10 mg/ml. The monodisperse droplets were dried in a dry laminar gas flow with temperatures of 50°C or 100°C. Different initial conditions affected the particle formation process and the particle morphology. The diameter of the final dried microparticles ranged from 4 to 10 µm. Their density varied from 1250 to 1950 mg/ml. The formulation and process conditions determined the distribution of chemical components in the dried microparticles, especially their surface composition as determined by energy-dispersive X-ray spectroscopy. The distribution of the chemical components was theoretically explained using characteristic times for the crystallization kinetics of the drying process. It was shown that the solute that reached supersaturation first formed most of the outer shell of the microparticles.

© 2016 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号