首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the Eulerian particle model was modified to predict the particle deposition rate in fully developed channel flow. The modified model is less complicated and has much lower computation time. The performance of the simplified model was examined by comparing the particle deposition rate in a vertical channel with the experimental data for fully developed channel flow available in the literature. The effects of turbophoretic force, thermophoretic force, electrostatic force, gravitational force, Brownian/turbulent diffusion, and the wall roughness on the particle deposition rate were examined. The predictions of the modified particle model were in agreement with the experimental data.  相似文献   

2.
In this study the v2-f model was used with the two-phase Eulerian approach to predict the particle deposition rate on a vertical surface in a turbulent flow. The standard Eulerian particle model was adopted from the literature and modified, considering the majority of particle transport mechanisms in the particle deposition rate. The performance of the modified model was examined by comparing the rate of particle deposition on a vertical surface with the experimental and numerical data in a turbulent channel flow available in the literature. The model took into account the effects of drag force, lift force, turbophoretic force, electrostatic force, inertia force and Brownian/turbulent diffusion on the particle deposition rate. Electrostatic forces due to mirror charging and charged particles under the influence of an electric field were considered. The predictions of the modified particle model were in good agreement with the experimental data. It was observed that when both electrostatic forces are present they are the dominant factor in the deposition rate in a wider range of particle sizes.  相似文献   

3.
Particle deposition in a fully developed turbulent duct flow was studied. The random walk model of Lagrangian approach was used to predict the trajectories of 3000 particles with a density of 900 kg/m3. The effects of thermophoretic force and air humidity were also considered. The results were compared with the previous studies with a particle size range of 0.01–50 μm and air flow velocity of 5 m/s. The profile of dimensionless deposition velocity with relaxation time presents a V-shaped curve and the results are in good agreement with the previous studies.The effects of air temperature and humidity on particle deposition with a particle size of 1 μm were also investigated. The results show that thermophoretic force accelerates particle deposition onto the duct walls with increasing temperature difference between air flow and the duct wall surface. Meanwhile, it was found that particle deposition velocity increases with air humidity.  相似文献   

4.
The present paper suggests the use of thermophoretic phenomena to decrease the rate of particle deposition onto pipe walls from a turbulent flow. When a tube is externally heated; the particles will be subjected to thermal force within the laminar sublayer in a direction away from the surface preventing or reducing their deposition. A theory proposed by EI-Shobokshy and Ismail (1980) has been used for estimating the deposition velocity. The thermal velocity component was calculated and the effective velocity of particles approaching the wall surface computed. The results present the relationship between particle penetration and particle size at different values of pipe wall temperature and Re. The experimental results showed a good agreement with theoretical results for particle sizes 6 -10 μm diameter, Re = 6000 – 8000 and pipe wall temperatures 50 – 150°C.  相似文献   

5.
The formation of fog in laminar and turbulent natural convection boundary layers over a cold vertical surface is investigated theoretically under conditions of local equilibrium, using the similarity forms of the boundary layer equations. The ambient medium surrounding the surface is composed of a noncondensable and a condensable vapor component which is present in trace amounts. The deposition of the vapor species in laminar convection over the cold surface is assumed to occur via ordinary Fick diffusion of vapor plus thermophoretic fog particle drift. In turbulent flow these transport mechanisms are reinforced by the eddy diffusion of vapor and fog particles. Turbulence is shown to lead to a discontinuity in the fog concentration at the boundary between the fog and clear regions. Partial agreement is obtained with available data on frost formation on a vertical plate cooled to cryogenic temperatures by assuming that the thermophoretic transport coefficient is about one order-of-magnitude smaller than its theoretical upper limit.  相似文献   

6.
7.
Modeling of particle deposition on adjacent walls is a key issue in various applications like separation or transport processes. The present paper focuses on the modeling of turbophoretic deposition of particles in the micron size range. The first step is to evaluate the important range where turbophoresis plays an important role in comparison to other mechanisms e.g. gravity or electrostatic separation. The disadvantages of commonly used models will be analyzed and overcome by implementing a more sophisticated approach considering damping of turbulent fluctuations in the wall-boundary layer. In contrast to previous work, commonly used turbulence models are applied to solve the mean flow field of the examples under consideration. The results will show a good prediction of particle deposition in comparison to experimental values [B.Y.H. Liu, J.K. Agarwal, Experimental observation of aerosol deposition in turbulent flow, Aerosol. Sci. 5 (1974) 145-155.] by using the advanced model.  相似文献   

8.
An experimental study was carried out to produce reliable data for the determination of the thermophoretic diffusion coefficient Kth of suspended oil particles in air, in the transition regime. An original device was used for the thermophoretic deposition efficiency measurement, involving a turbulent flow through a concentric tube annulus, with the inner tube cooled (5 °C) and the outer heated. Experimental parameters varied in particle diameter (0.039–5.13 μm), flow rate (150, 200, and 250 Nl min−1, corresponding to Reynolds number in the range 5000–10 000) and hot wall temperature (65–125 °C). This configuration, based on three controlled temperatures (gas inlet, cold wall, hot wall), the so-called “3T”, permits an overall deposition efficiency enhancement compared to conventional “2T” penetration devices (hot gas flow in a cooled tube). In the 3T configuration, significant thermophoretic deposition efficiencies have been obtained (up to 27%), together with limited gas temperature axial variations, thus permitting a reliable determination of the thermophoretic diffusion coefficient Kth.An analytical model was developed for the prediction of the thermophoretic deposition efficiency, for a given value of the thermophoretic diffusion coefficient Kth. This model has been used, together with our measurement results, to derive the Kth experimental values, for a Knudsen number ranging from 0.01 to 3. These Kth values were compared with evaluations based on various models available in the literature. Although widely used, Talbot's model always provides Kth values higher than our experimental results in the transition regime. The most relevant model appears to be the one proposed by Beresnev and Chernyak, particularly for an energy accommodation slightly lower than one.  相似文献   

9.

A new thermophoretic precipitator (TP) has been designed and used for the collection of nanosized aerosol particles. NaCl and Fe particles, with mean diameters of 55 nm and 3.6 nm, respectively, were used to determine the thermophoretic deposition efficiency as well as the uniformity of the deposition. When the average temperature gradients applied were 2200 K/cm and 2400 K/cm, a high thermophoretic deposition efficiency, close to 100%, was attained at aerosol flow rates below 15 sccm. A gradual decay in the efficiency was observed as the flow rate was increased. Theoretical calculations of particle deposition efficiency were in good agreement with experimental data. The deposition along the TP was shown to be homogenous on a millimeter scale for both NaCl and Fe particles collected on thin foil substrates and microscope grids, respectively. Finally, the thermophoretic precipitator was used to efficiently deposit Fe nanoparticles on a substrate for the subsequent growth of carbon nanotubes.  相似文献   

10.
This study investigated the thermophoretic particle deposition efficiency numerically. The critical trajectory was used to calculate thermophoretic particle deposition in turbulent tube flow. The numerical results obtained in turbulent flow regime in this study were validated by particle deposition efficiency measurements with monodisperse particles (particle diameter ranges from 0.038 to 0.498 μm) in a tube (1.18 m long, 0.43 cm i.d., stainless-steel tube). The theoretical predictions are found to fit the experimental data of Tsai et al. [Tsai, C. J., J. S. Lin, S. G. Aggarwal, and D. R. Chen, “Thermophoretic Deposition of Particles in Laminar and Turbulent Tube Flows,” Aerosol Sci. Technol., 38, 131 (2004)] very well in turbulent flows. In addition, an empirical expression has been developed to predict the thermophoretic deposition efficiency in turbulent tube flow.  相似文献   

11.
Thermophoretic deposition of aerosol particles (particle diameter ranges from 0.038 to 0.498 μm) was measured in a tube (1.18 m long, 0.43 cm inner diameter, stainless steel tube) using monodisperse NaCl test particles under laminar and turbulent flow conditions. In the previous study by Romay et al., theoretical thermophoretic deposition efficiencies in turbulent flow regime do not agree well with the experimental data. In this study, particle deposition efficiencies due to other deposition mechanisms such as electrostatic deposition for particles in Boltzmann charge equilibrium and laminar and turbulent diffusions were carefully assessed so that the deposition due to thermophoresis alone could be measured accurately. As a result, the semiempirical equation developed by Lin and Tsai in laminar flow regime and the theoretical equation of Romay et al. in turbulent flow regime are found to fit the experimental data of thermophoretic deposition efficiency very well with the differences of less than 1.0% in both flow regimes. It is also found that Talbot's formula for the thermophoretic coefficient is accurate while Waldmann's free molecular formula is only applicable when Kn is greater than about 3.0.  相似文献   

12.

The relationship between localized fluid dynamics and localized particle deposition patterns within bronchial airway bifurcations upon inspiration and expiration was analyzed for different bifurcation geometries, flow conditions, and particle sizes. For the simulation of three-dimensional airflow patterns in airway bifurcation models, the Navier-Stokes and continuity equations were solved numerically by the finite volume Computational Fluid Dynamics (CFD) program package FIRE. Spatial particle deposition patterns were determined by the intersection of randomly selected particle trajectories with the surrounding wall surfaces. While three-dimensional flow patterns were characterized by their corresponding two-dimensional secondary flow fields, three-dimensional deposition patterns were represented by their related two-dimensional deposition density plots. Two particle sizes were selected to explore the relationship between secondary flows and localized particle deposition patterns: 0.01 w m, to illustrate the effects of Brownian motion, and 10 w m, to display the effects of impaction and sedimentation. Changes in bifurcation geometry (shape of bifurcation zone, branching angle) and flow conditions (flow rate, inlet flow profile, direction of flow) lead to variations in resulting secondary flow patterns, which were reflected by corresponding differences in related particle deposition patterns. In conclusion, a distinct relationship could be observed between secondary flow patterns and deposition density plots, demonstrating that particle deposition patterns in airway bifurcations are not only determined by physical forces acting upon individual particles, but also by convective transport processes of the carrier fluid.  相似文献   

13.
A numerical investigation into the physical characteristics of dilute gas–particle flows over a square-sectioned 90° bend is reported. The modified Eulerian two-fluid model is employed to predict the gas–particle flows. The computational results using both the methods are compared with the LDV results of Kliafas and Holt, wherein particles with corresponding diameter of 50 μm are simulated with a flow Reynolds number of 3.47 × 105. RNG-based κ? model is used as the turbulent closure, wherein additional transport equations are solved to account for the combined gas–particle interactions and turbulence kinetic energy of the particle phase turbulence. Moreover, using the current turbulence modelling formulation, a better understanding of the particle and the combined gas–particle turbulent interaction has been shown. The Eulerian–Eulerian model used in the current study was found to yield good agreement with the measured values.  相似文献   

14.
Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium. It has numerous applications, especially in the field of aerosol technology. This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method. The governing equations are the momentum and energy equations for the gas and the particle equations of motion. The effects of the annulus size, particle diameter, the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows. Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient, deposition distance, and the ratio of inner to outer radius, but decreases with increasing particle size. It has been found that by taking into account the effect of developing flow at the entrance region, higher deposition efficiency was obtained, than fully developed flow.  相似文献   

15.
Thermophoresis of ultrafine particles in a turbulent pipe flow was studied using high-temperature and high-concentration polydisperse ultrafine particles. Experimental conditions were designed to simulate particle behaviour in an automobile exhaust pipe, with a particular focus on establishing similar particle residence time. From the experimental results, thermophoresis was found to be a dominant mechanism for ultrafine particle deposition in the turbulent pipe flow. A previous thermophoretic deposition model was found to be inadequate with respect to estimating the results of the experimental conditions. In this study, the experimental data and the computational analysis results reflect the necessity of establishing a new formula for thermophoretic deposition for high-concentration polydisperse ultrafine particles in a pipe flow.  相似文献   

16.
Measurements and simulations of an industrial outside vapor deposition process as used for the manufacture of optical wave guides were performed. Deposition efficiencies, flame temperatures, and gas velocities were measured. The hydrogen flame reaction was modeled by calculating the turbulent flow including a combustion model and using a computational fluid dynamics (CFD) solver to compute flow velocities, turbulence and temperatures in the flame. These results were compared with experimental data and reasonable agreement was found. The produced SiO 2 particles with predefined size were tracked through the flow field and it was determined whether they hit the surface of the cylindrical target or pass it.

Three flame configurations were investigated and the model could predict well the trends of the deposition efficiencies for the different flames. The differences in flame velocities and turbulence levels for the different configurations assisted the explanation of the performances of the flames. Turbulence levels were different for the three flames and it was concluded that for turbulent deposition processes the thermophoretic force that drives particles towards colder surfaces is less important than for laminar deposition processes.  相似文献   

17.
A computational model for Lagrangian particle tracking for studying dispersion and deposition of particles in a combustor with swirling flow and chemical reaction is developed. The model accounts for the effect of thermophoretic force, as well as the drag and lift forces acting on particles, in addition to the Brownian motion and gravitational sedimentation effects. The mean turbulent gas flow, temperature fields and chemical species concentration in the combustor are evaluated using the stress transport turbulent model of the FLUENT code. The instantaneous fluctuation velocity field is generated by a Gaussian filtered white noise model.

The simulated axial, radial and tangential mean gas velocities are compared with the existing experimental data. Ensembles of particle trajectories are generated and statistically analyzed. The effects of size and initial distribution on particle dispersion and deposition are studied. The particle concentration at different sections are also evaluated and discussed. The results shows that the turbulence dispersion effect is quite important, while the thermophoresis effect is small.  相似文献   

18.
Large-eddy simulations (LES) of particle transport and deposition in turbulent channel flow were presented. Particular attention was given to the effect of subgrid scales on particle dispersion and deposition processes. A computational scheme for simulating the effect of subgrid scales (SGS) turbulence fluctuation on particle motion was developed and tested. Large-eddy simulation of Navier-Stokes equations using a finite volume method was used for finding instantaneous filtered fluid velocity fields of the continuous phase in the channel. Selective structure function model was used to account for the subgrid-scale Reynolds stresses. It was shown that the LES was capable of capturing the turbulence near wall coherent eddy structures.

The Lagrangian particle tracking approach was used and the transport and deposition of particles in the channel were analyzed. The drag, lift, Brownian, and gravity forces were included in the particle equation of motion. The Brownian force was simulated using a white noise stochastic process model. Effects of SGS of turbulence fluctuations on deposition rate of different size particles were studied. It was shown that the inclusion of the SGS turbulence fluctuations improves the model predictions for particle deposition rate especially for small particles. Effect of gravity on particle deposition was also investigated and it was shown that the gravity force in the stream wise direction increases the deposition rate of large particles.  相似文献   

19.
Numerical modeling was performed to study the submicron particle dynamics in a confined flow field containing a rotating disk, temperature gradient, and various inlet gas flow rates. The Lagrangian model was employed to compute particle trajectories under the temperature gradient, disk rotation speed, and inlet gas flow rate effects. The trajectories of particles with diameters of 1 μm, 0.1 μm, and 0.01 μm were examined in this study. When the inlet gas temperature was lower than that of the disk, particle-free zones were created due to upward thermophoretic force for 1 μm and 0.1 μm particles. Disk rotation was found to depress the size of the particle-free zone. Particle deposition onto the disk for 0.01 μm particles was possible because of the Brownian motion effect. A detailed evaluation of the particle-free zone size as a function of the temperature gradient, disk rotation speed, and inlet gas flow rate was performed. When the inlet gas temperature was higher than the disk temperature, particle deposition onto the disk was enhanced due to the downward thermophoretic force for 1 μm and 0.1 μm particles. Disk rotation was found to increase the deposition rate. For 0.01 μm particles, Brownian motion was more important than thermophoretic force in controlling particle behavior. The particle deposition rates as a function of the temperature gradient, disk rotation speed, and inlet gas flow rate were performed.  相似文献   

20.
Abstract

Regional particle deposition efficiency and deposition patterns were studied experimentally in a human airway replica made from an adult cadaver. The replica includes the oral cavity, pharynx, larynx, trachea, and four generations of bronchi. This study reports deposition results in the tracheobronchial (TB) region. Nine different sizes of monodispersed, polystyrene latex fluorescent particles in the size range of 0.93–30 μm were delivered into the lung cast with the flow rates of 15, 30, and 60 l min? 1. Deposition in the TB region appeared to increase with the increasing flow rate and particle size. Comparison of deposition data obtained from physical casts showed agreement with results obtained from realistic airway replicas that included the larynx. Deposition data obtained from idealized airway models or replicas showed lower deposition efficiency. We also compared experimental data with theoretical models based on a simplified bend and bifurcation model. A deposition equation derived from these models was used in a lung dosimetry model for inhaled particles, and we demonstrated that there was general agreement with theoretical models. However, the agreement was not consistent over the large range of Stokes number. The deposition efficiency was found as a function of the Stokes number, bifurcation angle, and the diameters of parent and daughter tubes. An empirical model was developed for the particle deposition efficiency in the TB region based on the experimental data. This model, combined with the oral deposition model developed previously, can be used to predict the particle deposition for inertial effects with improved accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号