首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly sensitive detection of nanoscale aerosols, or nano-aerosols, is a difficult challenge. Here, we report a fiber optical technique that is capable of detecting trace-level nano-aerosols. Our method is based on monitoring the nano-aerosol-induced resonance shift due to the optical Whispering-Gallery-Mode (WGM) in a cylindrical optical fiber resonator. A nearly linear relationship between the WGM resonance shift and the aerosol coverage ratio of silica nanoparticles (40–50 nm dia.) on the fiber resonator was identified in the low coverage regime. Our experimental results imply sensitivity at the level of ~2 nanoparticles per μm2 deposited on the fiber resonator, which corresponds to pg-level sensitivity in the total aerosol mass within the effective detection area. The response of this fiber optical sensor is further confirmed by using silica nanoparticles deposited on the fiber surface via electrostatic self-assembly. The fiber optical technique for nanoparticle detection may ultimately lead to an instrument capable of real-time in situ aerosol detection with ultrahigh sensitivity.

Copyright © 2016 American Association for Aerosol Research  相似文献   


2.
We report production of bimetallic nanostructured copper– silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging–diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper–silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver.

Copyright 2013 American Association for Aerosol Research  相似文献   

3.
Hydroxyapatite/titania nanocomposite coatings were electrophoretically deposited from ethanolic suspensions of titania and fiber shaped hydroxyapatite (FHA) nanoparticles. Triethanolamine (TEA) was used to enhance the colloidal stability of particles in suspensions. Electrophoretic deposition (EPD) was performed using the suspensions with different concentrations (wt%) of titania/FHA particles. EPD rate decreased more rapidly with time for suspensions with higher wt% of FHA due to the higher voltage drop over the deposits shaped from them. Stacking of long FHA particles on the substrate during EPD resulted in the formation of coarse pores in the deposits. It was found that titania nanoparticles can more efficiently infiltrate through and fill the pores in TEA containing suspensions due to the stronger electrostatic repulsion force between pore walls (FHA) and titania nanoparticles in them. The coatings deposited from the suspensions with 50 wt% of FHA or more did not crack during drying due to the significant reinforcement action provided by high wt% of FHA in them. Nanocomposite coatings deposited from TEA containing (2 mL/L) suspensions with 50 and 75 wt% of FHA had the best corrosion resistance in simulated body fluid (SBF) solution due to their crack-free microstructure and efficiently filled pores.  相似文献   

4.
Metal screens with uniform micrometer-sized opening were employed to sieve aerosol particles by suppressing the adhesion of particles smaller than the openings. The collection efficiencies of monodispersed polystyrene latex (PSL) particles were experimentally determined using the metal screens with 1.2, 1.8, 2.5, and 4.2 μm openings at various filtration velocities. The particles smaller than the mesh opening adhered on the metal screen at a low filtration velocity, but the bounce-off of particles on the mesh surface suppressed the adhesion at a high velocity. As a result, we found that the adhesion of PSL particles larger than 0.3 μm mostly suppressed at a filtration velocity higher than 10 m s?1 and therefore we can sieve aerosol particles according to the opening size of metal screens. We also found that the particle number concentration could be determined by measuring the increase in pressure drop since the clogging of metal screen openings takes place by the individual particles.

© 2016 American Association for Aerosol Research  相似文献   

5.
A non-surfactant-based synthesis approach to mesoporous hollow spheres through the use of colloidal silica is presented. Based on nanoparticle assembly chemistry developed previously for silica/polymer hybrid microcapsules, the room-temperature preparation follows a two-step sequence: (1) the electrostatic reaction of cationic polymer with an anionic salt solution, resulting in a suspension of salt-bridged polymer aggregates; and (2) the electrostatic reaction between this suspension and an aqueous suspension of nanoparticles (NPs). As a specific example, 13-nm silica particles, combined with polyallylamine and sodium citrate, gave silica/polymer hollow spheres with a mean diameter of 2.1 μm and a BET surface area of 4 m2/g. After calcination at 600 °C, the resulting silica-only microcapsules had a BET surface area of 259 m2/g, a modal pore size of 4.0 nm, and a pore volume of 0.38 cc/g, values that exceeded those of calcined silica NPs. This colloidal silica-based material is an example of the simultaneous control of pore size (at the nanometer scale) and particle morphology (at the micrometer scale) that is possible through charge-driven NP assembly.  相似文献   

6.
《分离科学与技术》2012,47(13):3476-3493
Abstract

A unipolar charger containing multiple discharging wires in a tube (inner diameter: 50 mm) was developed and tested in order to increase the aerosol flow rate and the charging efficiency of nanoparticles. Four gold wires of 25 µm in diameter and 15 mm in length were used as the discharging electrodes to generate positive ions (Ni) from 2.72 × 108 ions/cc to 3.87 × 109 ions/cc in concentration at the discharging voltage of + 4.0 ~ + 10 KV. Monodisperse NaCl particles of 10 ~ 50 nm in diameter were used to test the charging efficiency and the particle loss of charged particles with different aerosol flow rates, corona voltages and sheath flow rates. The sheath air near the tube wall was found to increase the extrinsic charging efficiency, and the highest efficiency was obtained at + 6.0 KV discharging voltage, 10 L/min aerosol flow rate and 9 L/min sheath flow rate. The extrinsic charging efficiency increased from 10.6% to 74.2% when the particle diameter was increased from 10 to 50 nm. The TDMA (tandem differential mobility analyzer) method was used to determine the charge distribution and the mean charge per particle and it was found that the Fuchs charging theory corrected for the extrinsic charging efficiency matched with the experimental data very well.  相似文献   

7.
We present in‐situ formation of metal nanoparticle/acrylic polymer hybrid and its application to prepare hybrid latex particles by miniemulsion polymerization. On the surface of a silver nanoparticle/silica nanoparticle/acrylic polymer hybrid layer formed in‐situ on a polyethylene terephthalate (PET) substrate, a copper film is deposited using electroless copper deposition. Silver nanoparticles, which are formed in‐situ via the reduction of silver ion by radical species and subsequent annealing, work as a catalyst for the electroless deposition. Miniemulsion polymerization via the in‐situ formation of nanoparticles affords nanoparticle/acrylic polymer hybrid latex particles and polymer particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42675.  相似文献   

8.
ABSTRACT

In this study, Zn(II) ion-imprinted polymer was prepared on the surface of vinyl silica particles and applied for detection of Zn(II) ions using differential pulse voltametry. The ion- imprinted polymer particles were prepared by free radical polymerization. The prepared particles were characterized by different morphological and elemental techniques. The ion-imprinted particles were used to fabricate the carbon paste electrode as a zinc ions sensor. The modified zinc sensor showed linear response in the concentration range 6.12 × 10?9 to 4.59 × 10?8 mol L?1. The limit of detection and limit of quantification of the electrode were 1.351 × 10?8 and 4.094 × 10?8 mol L?1, respectively.  相似文献   

9.
Metal and metal oxide particles and nanoparticles, differing from each other by their nature and synthesis technique, were deposited onto boron-doped diamond (BDD) thin film electrodes. The applicability in electrocatalysis of thermally decomposed IrO2 and Au nanoparticles, electrodeposited Pt particles, dendrimer-encapsulated Pt nanoparticles (Pt DENs) and microemulsion-synthesized Pt/Ru nanoparticles was studied, once deposited on BDD substrate. In all cases, the electrochemical response of the composite electrodes could be solely attributed to the supported particles. All the particles, with the exception of Pt DENs, exhibited electrocatalytic activity. Pt DENs inactivity has been attributed to insufficient removal of the dendrimer polymer matrix. It was concluded that the BDD electrode is a suitable substrate for the electrochemical investigation of supported catalytic nanoparticles.  相似文献   

10.
The detection of atmospheric aerosol particles is becoming an important issue in many fields such as environmental science, occupational medicine, semiconductor industry and material science. In the present paper, we utilized the conductive polymer, polypyrrole (PPy), as a sensitive membrane for detecting aerosol particles optically. A polymer optical fiber reflectance probe is constructed by depositing the PPy nanofilm at the end face of the fiber. The sensor principle relies on the change in the refractive index of the PPy nanofilm upon its interaction with aerosol nanoparticles and on the electrostatic induction between aerosol particles and the PPy nanofilm, which leads to a change in the reflected intensity. For preliminary evaluation of optical aerosol detector, three types of aerosol particles, NaCl, black carbon (BC) and polystyrene latex (PSL), are selected. The fabricated fiber optic reflectance probe using the PPy nanofilm shows distinct variations in the reflected light intensity depending on the type of aerosol particle and its properties. The proposed sensing approach may promote the use of conductive polymers in optical techniques for the detection of atmospheric aerosols.  相似文献   

11.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

12.
A new instrument, namely the 1 × 3 tandem differential mobility analyzer (1 × 3-TDMA), has been developed. Its primary measurement is the irreversibility of the hygroscopic growth factor of aerosol particles. The instrument uses the hysteresis of phase transitions to infer the solid or aqueous state of the particles. A first DMA passes particles of a selected electric mobility at relative humidity RH0. Exiting this DMA, the particles are split into three separate flows. The first flow is exposed to RH 0  → (RH 0 δ ) → RH 0 in a deliquescence test before passing through a second DMA that is set to the same electric mobility as the first DMA. The second flow passes directly to a third DMA without change in RH, thereby serving as a reference arm. This DMA is also set to the same electric mobility as the first DMA. The transmission ratio of the 1 × 3-TDMA is defined as the particle concentration passing the deliquescence test divided by that passing through the reference arm. The transmission ratio is unity in the absence of deliquescence and zero when a phase transition occurs, at least for ideal instrument performance in application to a test aerosol of fully deliquesceable particles. For the third flow passing out of the first DMA, an efflorescence test is run by using the RH profile of RH 0  → (RH 0 ? δ ) → RH 0 before passing through a fourth DMA. A full data set for the 1 × 3-TDMA is obtained by scanning RH0, typically from 20 to 85%. In the present paper, the 1 × 3-TDMA instrument is described, and laboratory data are presented for the phase transitions of externally mixed aerosols of aqueous and solid sodium chloride particles, aqueous and solid ammonium sulfate particles, and their mixtures, as well as a mixture of aqueous and solid sea salt particles. The observed transmission ratio is compared to a model analysis. The intent behind the development of this instrument is to deploy it for field measurements and use observations of the irreversibility of the growth factors of atmospheric particles as markers of their physical state.  相似文献   

13.
We propose a novel, facile synthesis route to produce stable platinum-based polymer electrolyte membrane fuel cell catalysts supported on nitrogen-doped carbon. Platinum nanoparticles were decorated on polyaniline (PANI), a nitrogen-containing polymer, before its subsequent carbonization at 750 °C under nitrogen atmosphere. Thus, nitrogen-doped carbon-supported platinum catalysts were produced with homogeneously distributed small metal particles, which are otherwise difficult to obtain. Most remarkably the platinum nanoparticles did not grow significantly during the carbonization step. In contrast, commercially available standard catalysts on carbon materials subjected to the same heat treatment showed severe particle growth. In accordance with the high thermal stability, the PANI-derived catalyst shows good long-term stability in accelerated stress test and a promising performance as cathode material in 5 × 5 cm2 single cells. The synthesis is carried out without the need for special laboratory equipment, so it will be easy to scale up for industrial catalyst production.  相似文献   

14.
A granular bed was designed to collect nanoparticles as an alternative to nylon mesh screens for use in a nanoparticle respiratory deposition (NRD) sampler. The granular bed consisted of five layers in series: a coarse mesh, a large-bead layer, a small-bead layer, a second large-bead layer, and a second coarse mesh. The bed was designed to primarily collect particles in the small-bead layer, with the coarse mesh and large-bead layers designed to hold the collection layer in position. The collection efficiency of the granular bed was measured for varying depths of the small-bead layer and for test particles with different shape (cuboid, salt particles; and fractal, and stainless steel and welding particles). Experimental measurements of collection efficiency were compared to estimates of efficiency from theory and to the nanoparticulate matter (NPM) criterion, which was established to reflect the total deposition in the human respiratory system for particles smaller than 300 nm. The shape of the collection efficiency curve for the granular bed was similar to the NPM criterion in these experiments. The collection efficiency increased with increasing depth of the small-bead layer: the particle size associated with 50% collection efficiency, d50, for salt particles was 25 nm for a depth of 2.2 mm, 35 nm for 3.2 mm, and 45 nm for 4.3 mm. The best-fit to the NPM criterion was found for the bed with a small-bead layer of 3.2 mm. Compared to cubic salt particles, the collection efficiency was higher for fractal-shaped particles larger than 50 nm, presumably due to increased interception.

Copyright 2015 American Association for Aerosol Research  相似文献   

15.
Hexagonal boron nitride (h-BN) particles have attracted increasing interest due to mechanical properties, chemical stability, electrical features, thermal stability, and good lubrication property. In this work hexagonal boron nitride were used as inorganic fillers, which increase the mechanical and thermal stabilities of the membrane. The proton conducting polymer membranes were prepared by blending of sulfonated polysulfone, polyvinyl phosphonic acid, and boron nitride. Scanning electron microscopy indicated the homogeneous distribution of hBN nanoparticles in the polymer matrix. hBN increased the proton conductivity and in the anhydrous state the maximum proton conductivity was determined as 7.9 × 10?3 S/cm at 150°C for PVPA-SPSU-5hBN.  相似文献   

16.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
We describe the performance of a drift tube-ion mobility spectrometry (DT-IMS) instrument for the measurement of aerosol particles. In DT-IMS, the electrical mobility of a measured particle is inferred directly from the time required for the particle to traverse a drift region, with motion driven by an electrostatic field. Electrical mobility distributions are hence linked to arrival time distributions (ATDs) for particles reaching a detector downstream of the drift region. The developed instrument addresses two obstacles that have limited DT-IMS use for aerosol measurement previously: (1) conventional drift tubes cannot efficiently sample charged particles at ground potential and (2) the sensitivities of commonly used Faraday plate detectors are too low for most aerosols. Obstacle (1) is circumvented by creating a “sample volume” of aerosol for measurement, defined by the streamlines of fluid flow. Obstacle (2) is bypassed by interfacing the end of the drift region with a condensation particle counter. The DT-IMS prototype shows high linearity for arrival time versus inverse electrical mobility (R 2 > 0.99) over the size range tested (2.2–11.1 nm), and measurements compare well with both analytical and numerical models of device performance. A dimensionless calibration curve linking drift time to inverse electrical mobility is developed. In less than 5 s, it is possible to measure 11.1 nm particles, while 2.2 nm particles are analyzable on a subsecond scale. The transmission efficiency is found to be dependent upon electrostatic deposition for short drift times and upon advective losses for long drift times.

Copyright 2014 American Association for Aerosol Research  相似文献   


18.
19.
The ionization chemical vapor deposition (ionization CVD) method, which is one of the ion-assisted aerosol generation methods, was used to synthesize Co nanoparticles and fabricate a magnetoresistance device using them. A cobalt tricarbonyl nitrosyl vapor is ionized by a high-pressure ionizer before being fed into the reactor. It reacts and forms nanoparticles by a thermal decomposition reaction in the furnace reactor. Particles deposit electrostatically on an insulator substrate that has two Au electrodes and fill the gap between the electrodes. This Co-nanoparticle device is then annealed under hydrogen gas to deoxidize the deposited particles. After annealing, two copper wires are attached to the two Au electrodes to connect with a DC voltage supplier and an ammeter. The magnetoresistance of the device was evaluated by measuring its electrical resistance using a superconducting quantum interference device (SQUID) magnetometer. The X-ray diffraction patterns of the nanoparticles before and after annealing revealed CoO and Co, respectively. Two fabricated devices with number densities of Co nanoparticles of 4.25 × 1010 and 1.16 × 1011 cm?2 showed magnetoresistance ratios of 73% and 1002%, respectively, at an applied voltage of 30 V, a measurement temperature of 5 K, and a magnetic field of ?1 ~ 1 T. It was found from the experimental results that the method developed in this article was useful to fabricate the Co-nanoparticle magnetoresistance device.  相似文献   

20.
Poly(m‐chloroaniline) (PmClAn) was synthesized by emulsion polymerization. The influences of reaction temperature and initiator concentration on polymerizations were studied. It was found that PmClAn with number‐average molecular weight of 1.85 × 103 g mol?1 was obtained by the following conditions: 80 °C, [monomer] = 0.187 × 10?3 mol l?1, [sodium lauryl sulfate] = 4.8 × 10?2 mol l?1, [potassium peroxydisulfate] = 5.6 × 10?2 mol l?1, reaction period = 2.0 h. 1H NMR, FTIR, and transmission and scanning microscopy were used for structural characterization of PmClAn. It was shown that the ratio of benzoid to quinoid units in the macromolecular chain was respectively 3:2, and that PmClAn has a typical crystalline monoclinic form. A PmClAn molecular chain configuration was also proposed on the basis of crystallographic data. Cyclic voltammetry experiments revealed the PmClAn membrane electrode electroactivity. This electroactivity increased when the polymer was proton‐doped. When Pt particles were electrodeposited onto the polymer membrane electrode, they presented a preferred orientation. Isopropanol oxidation intensities with platinized PmClAn modified electrodes were larger than with a platinized Pt electrode. We also found that oxidation occurred mainly on the Pt particles deposited on the polymer, and that the anodic peak potential changed with polymer and its doping level. These results indicated that the Pt particles interacted with the polymer and that catalytic properties could be observed. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号