首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dielectric properties andI–V characteristics of solution-gas interface-formed PbS thin-film capacitors (Al/PbS/Al) of various thicknesses have been studied in the frequency range 10-106 Hz at various temperatures (300–443 K). Current-voltage (I–V) characteristics show space-charge-limited conduction. Dielectric constant (ε) increases with increasing film thickness and temperature and decreases with increase of frequency. The loss factor (tanδ) peaks observed in tanδ vs frequency and tanδ vs temperature reveal relaxation effect from dipolar orientation. These maxima shift to higher-temperature region with increasing frequency. The large increase in capacitance (C) and dielectric constant (ε) towards low-frequency (f) region indicates the possibility of an interfacial polarization mechanism in this region.  相似文献   

2.
Dielectric constantɛ, loss tanδ and a.c. conductivityσ of LiF-B2O3: Ln3+ (where Ln=Ce, Pr, Nd and Tb) glasses are studied as functions of frequency (in the range 102–106 Hz) and temperature (range 30–200°C). The dielectric breakdown strength of these glasses was also determined at room temperature in an air medium. The rate of increase ofɛ and tanδ with temperature decreases with decrease in the ionic radius of RE3+ ion whereas the dielectric breakdown strength, the activation energy for a.c. conduction in the high temperature region decreases with increase in the ionic radius of RE3+ ion. An attempt has been made to explain the a.c. conduction in these glasses on the basis of quantum mechanical tunnelling (QMT) model.  相似文献   

3.
The dielectric constant (K), loss (tanδ) andac conductivity of a sepiolite sample have been measured as a function of frequency in the range 102-107 Hz and in the temperature region 30–400°C. Thedc conductivities of hot pressed pellets were measured in the temperature range 30–550°C.K and tanδ of these samples decrease with increasing frequency. Results of these measurements have been correlated with the structural transformation accompanying dehydration, making use ofdta, ir and x-ray data. The moderately large value of activation energy (∼ 2·2 eV) in the intrinsic range suggests that the conduction process is most probably associated with ions.  相似文献   

4.
Large single crystals of an organic nonlinear optical (NLO) material, benzil, have been grown by employing an indigenously built Bridgman-Stockbarger crystal grwoth system. The dielectric constant (ε r), dielectric loss tangent (tanδ) and impedance (Z) of these crystals, monitored along the crystallographica-axis, as a function of frequency in the 100kHz-10MHz range, exhibit sharp resonance effects in the 100–300kHz region. These strong resonance effects are attributed to the piezoelectric nature of the crystal. The origin of the appearance of the sharp peaks in the frequency variation ofε r and tanδ is in response to the elastic resonances induced via the externally applied electric field. The resonance peak positions shift towards lower frequencies with increase in temperature as a consequence of the decrease in the stiffness coefficient (C 11) of the crystal.  相似文献   

5.
The dielectric constant (K), loss (tanδ), and hence conductivity (σ) of SrTiO3 single crystals have been measured in the frequency region 102–107 Hz and in the temperature range 30°–350° C. Quenching, subjecting the crystals to high electric fields (a.c. or d.c.) and X-ray orγ-ray irradiation, or a combination of these treatments, is found to bring about interesting changes in these properties. An attempt is made to understand the results.  相似文献   

6.
Dielectric properties of solution-gas interface-formed Fe(OH)3 thin-film capacitors (Al/Fe(OH)3/Al) of various thicknesses have been studied in the frequency range 10–106 Hz at various temperatures (300–443 K). Dielectric constant, ε, increases with increasing film thickness (d) and temperature (T) and decreases with increase of frequency (f). The loss factor (tan δ), showing pronounced minimum with frequency, increases with rise of temperature, and tan δmin shifts to a higher frequency. The large increase in dielectric constant towards low frequency region indicates the possibility of an interfacial polarization mechanism in this region.  相似文献   

7.
Conducting polymeric nanocomposite containing Li–Ni–Sm–Fe–O spinel was synthesized by the chemical oxidizing of aniline in the presence of LiNi0.5Sm0.08Fe1.92O4 particles. The dielectric and electric modulus properties of the as-prepared samples were investigated over a frequency range from 106 to 109 Hz. The dielectric constant (ε′), dielectric loss (ε″) and dissipation factor (tan δ) for all samples presented relatively high values at low frequency and were found to decrease with the frequency. The values of ε′, ε″ and tan δ of the nanocomposite were lower than that of the pristine PANI. Electric modulus analysis had been carried out to understand the electrical relaxation process. The dielectric relaxation time for the nanocomposite became longer due to the introduction of LiNi0.5Sm0.08Fe1.92O4 particles lowering the crystallinity of PANI.  相似文献   

8.
CaO–B2O3–SiO2 glass-ceramics were synthesized by sol–gel method, and the effect of Ca/Si ratio on the microstructures, electrical properties and mechanical characteristics of this ternary system was investigated. The results showed that the increase of CaO content is favorable for the crystallization of CaO–B2O3–SiO2 system and formation of the desired glass-ceramics. The bending strength of the sintered glass-ceramics increases with CaO content by increasing of crystalline phases. When the Ca/Si ratio increases, the dielectric constant (ε r) decreases and loss (tanδ) increases gradually. The thermal expansion coefficient (TEC) enhances by increasing CaO contents due to the formation of other crystal phases with large TEC value. The glass-ceramics exhibit low dielectric constant and loss (ε r < 4.7, tanδ < 5 × 10-4 at 1 MHz), high resistivity (ρ > 1012 Ω · cm), as well as excellent mechanical properties (σ ≈ 160 MPa, α ≈ 3.6 × 10−6/°C).  相似文献   

9.
Composites of epoxy resin having different amounts of graphite particles have been prepared by solution casting method. Temperature dependence of dielectric constant, tan δ and a.c. conductivity was measured in the frequency range, 1–20 kHz, temperature range, 40–180°C for 0.99, 1.96 and 2.91 wt% graphite filled and unfilled epoxy composites. It was observed that the dielectric constant, tanδ and a.c. conductivity increase with increasing temperature. Near the transition temperature the materials show anomalous behaviour for the observed properties. Peaks of dielectric constant, tan δ and a.c. conductivity were observed to shift towards lower temperature with increasing frequency. Clear relaxation (tan δ) peaks around 169°C were observed in epoxy resin, which shifted to lower temperature side on increasing the frequency. Addition of 2.91 wt% graphite shifted the tan δ peaks towards higher temperature side by creating hindrances to the rotation of polymer dipoles. Addition of 2–91 wt% graphite leads to an increased relaxation time τ of dipoles in polysulphide epoxy from 1.44 × 10−5− 3.92 × 10−5 (s) at 90°C by creating the hindrance to the rotation of dipoles.  相似文献   

10.
The ceramic samples of lithium-samarium modified lead molybdate, Pb(Li1/4 Sm1/4 Mo1/2)O3 (PLSM)—a member of ABO3 family were prepared by solid state reaction technique at ≈ 600–700°C. Preliminary X-ray analysis suggests the formation of single phase orthorhombic compound of PLSM. Studies of surface morphology, uniform particle/grain distribution, and presence of elements in the compound were completed using scanning electron microscope (SEM). Measurements of dielectric constant (ɛ), loss (tanδ) and conductivity (σ) at different frequencies and temperatures provided that the compound has a strong dielectric anomaly at 107°C.  相似文献   

11.
The dielectric properties of lead lanthanum zirconate titanate (PLZT) ceramics [Pb(Zr0·57Ti0·43)O3 + x at% of La, x = 3, 5, 6, 10 and 12] have been measured in the frequency range 1 Hz–1 MHz using the vector impedance spectroscopy (VIS) at different temperatures. All the compositions show both non-dispersive and dispersive dielectric responses in different temperature regions. The non-dispersive region obeys the universal dielectric response. A low frequency (<1 kHz) relaxation phenomenon with a high value of distribution parameter ‘h’ (~0·4 to 0·6) has been observed in all the compositions around the temperature corresponding to the maximum dielectric constant (T m). The activation energies as calculated from the relaxation and d.c. conduction processes are comparable. The ferroelectric phase transition is diffuse in nature and broadening of the peak increases with La content.  相似文献   

12.
In order to conciliate dielectric and non-Ohmic properties of CaCu3Ti4O12 (CCTO) ceramics, NiO, SnO2, SiO2, and Al2O3 were added as sintering aids to promote the grain growth of CCTO ceramics. Microstructure, dielectric properties, and non-Ohmic behavior of the CCTO ceramics were investigated. Among them, NiO-modified CCTO exhibits good dielectric and non-Ohmic properties (ε = 69833, tanδ = 0.073, α = 3.66 and E B = 296.7 V/cm), due to NiO is also one of giant dielectric materials. Therefore, it is suitable for applying semiconductor circuits. The relationship between electrical current density (J) and electrical field (E) demonstrated that Schottky barrier should exist at grain boundaries. Non-linear coefficient α was directly proportional to the height of barrier. Depressing barrier width would improve significantly dielectric permittivity but decrease breakdown voltage.  相似文献   

13.
The electrical properties for 20Bi2O3–60B2O3 (20−x)–CaF2xSm2O3 glasses (0 ≤ x ≤ 2) were measured in the temperature range 297 K up to 629 K and in the frequency range 0·1–100 kHz. The d.c. and a.c. conductivity values and the dielectric loss (tan δ) values were found to increase with increasing Sm2O3 content, whereas the activation energy of conductivities and the dielectric constant decreased. These results were attributed to the introduction of the rare earth ions; promote the formation of a high number of non-bridging oxygen atoms, which facilitate the mobility of charge carriers. The frequency dependence of the a.c. conductivity follows the power law σ ac(ω) =  s . The frequency exponent (s) values (0·64 < s < 0·8) decrease with increasing temperature. This suggested that the a.c. conduction mechanism follows the correlated barrier hopping model (CBH). The dielectric constant (ε ) and dielectric loss (tan δ values) were found to increase with increasing temperature and increasing Sm2O3 concentration in the glass. The a.c. conductivities as a function of frequency at different temperatures of a given glass superimposed onto a master curve (Roling scaling model). Furthermore, we have performed to scale the data as a function of composition. Two master curves were obtained, which suggested that there are differences in dominant charge carriers between glasses having Sm2O3 concentration ≥1 and glass of Sm2O3 concentration <1.  相似文献   

14.
ZrO2–TiO2 composite films were fabricated by radio frequency magnetron sputtering and post annealing in O2. It was found the films remained amorphous below the annealing temperature of 500 °C. The as-deposited ZrO2–TiO2 film has a high dielectric constant of 22, and which increases to 34 after annealing at 400 °C. At low electric field, the dominant conduction mechanisms are Schottky emission for both the as-deposited and the annealed thin films. At high electric field, the conduction mechanism changes to space-charge-limited current and then changes to Poole–Frenkel (PF) emission after annealing at 400 °C.  相似文献   

15.
The (1−x) Ni0.92Co0.03Mn0.05Fe2O4 + (x) BaTiO3 magnetoelectric (ME) composite have been prepared using conventional double sintering ceramic process where x varies as 1.00, 0.85, 0.70, 0.55 and 0.00. The presence of both phases has been confirmed by X-ray diffraction and the microstructure study will be carried out by SEM technique. The dc resistivity and thermo-emf of the samples have been studied with variation in temperature. The variation of dielectric constant (έ) and loss tangent (tan δ) will be measured in the frequency range 100 Hz–1 MHz. The ac conductivity has been derived from dielectric constant (έ) and loss tangent (tan δ). The static value of magnetoelectric conversion factor dc (ME)H has been studied as a function of intensity of magnetic field.  相似文献   

16.
The effects of Mn added during processing on the dielectric properties and microstructure of the BaTiO3-based ceramic materials system were discussed. Experiments show that a proper content of Mn can significantly increase dielectric constant (ε) and reduce the dielectric loss (tanδ) in BaTiO3-based X7R ceramic materials. The results attribute to the reaction: . When the system doped with 0.046mol% MnCO3 was sintered at 1240 °C for 4 h, the ε, tanδ and TCC were 5800, 1.6%, 0 ± 10% at 1 KHz respectively.  相似文献   

17.
Ferroelectric phase transition in Ba5RTi3Nb7O30 [R=Nd, Eu, Gd] ceramics   总被引:1,自引:0,他引:1  
Polycrystalline samples of Ba5RTi3Nb7O30 [R=Nd, Eu, Gd], were prepared using high-temperature solid-state reaction technique. Preliminary X-ray structural analysis of the compounds shows the formation of single phase compounds (orthorhombic crystal system) at room temperature. Detailed studies of dielectric properties (ɛ, tanδ,σ) as a function of frequency (400 Hz to 10 kHz) and temperature (30° to 380°C) show that these compounds exhibit diffuse ferroelectric phase transition.  相似文献   

18.
Glass samples of the system (15Li2O–30ZnO–10BaO–(45 − x)B2O3xCuO where x = 0, 5, 10 and 15 mol%) were prepared by using the melt quenching technique. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, a.c. conductivity and dielectric properties (constant εφ, loss tan δ, a.c. conductivity, σac, over a wide range of frequency and temperature) of these glasses were carried out as a function of copper ion concentration. The analysis of the results indicate that the density increases while molar volume decreases with increasing of copper content indicates structural changes of the glass matrix. The glass transition temperature, T g, and crystallization temperature, T c, increase with the variation of concentration of CuO referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter (T c − T g) decreases with increasing CuO content, indicates an increasing concentration of copper ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BO3, BO4, and ZnO4. The structural changes observed by varying the CuO content in these glasses and evidenced by FTIR investigation suggest that the CuO plays a network modifier role in these glasses while ZnO plays the role of network formers. The dielectric constant decreased with increase in temperature and CuO content. The variation of a.c. conductivity with the concentration of CuO passes through a maximum at 5 mol%. In the high temperature region, the a.c. conduction seems to be connected with the mixed conduction viz., electronic conduction and ionic conduction.  相似文献   

19.
The dc conductivity and dielectric parameters of glassy system of a-Se70Te30−x Sn x (x = 0, 2, 4, 6, 8 and 10) glasses have been investigated. Frequency and temperature dependence of dielectric constants (ε′) and dielectric loss (ε′′) are studied in the frequency range 120–100 kHz and temperature range 300–390 K. Dielectric dispersion is observed when Tin (Sn) is incorporated to a-Se–Te system in the entire temperature range. These results explain that the dc conduction loss is dominated in the present system. From dc conductivity studies it is observed that the dc conductivity and activation energy increases with increasing tin concentration in the present system.  相似文献   

20.
AC electrical conductivity measurements were carried out in the temperature range 290–473 K over the frequency range 0.1–20 kHz of vacuum deposited Ortho-hydroxy acetophenone azine films. It was found that the ac electrical conductivity increases with frequency according to the relation σac(ω) = A ωs. The values of the dielectric constant, , slightly changed in higher frequencies irrespective of temperature change, whereas its value increases in higher temperature with the decrease in frequency. Also, the dielectric loss, ɛ′′, and tan δ, has been found to increase with raise in temperature and decrease in frequency. The obtained experimental data has been analyzed with reference to various theoretical models. The analysis shows that the correlated barrier hopping (CBH) model is the most appropriate mechanism for the ac electrical conduction in these films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号