首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过添加适量的Al_2W_3O_(12)负热膨胀粉体来优化碳化硅颗粒增强铝基(SiC_p/Al)复合材料的热膨胀系数。实验采用固相法制备负热膨胀性能的Al_2W_3O_(12)粉体,并按10%,20%,30%的体积比添加至SiC_p/Al复合粉体中,利用粉末冶金工艺制备SiC_p/Al_2W_3O_(12)/Al复合材料。实验结果表明:制备的复合材料组织分布均匀,致密度良好。室温到200℃内,在Al基体质量分数不变的前提下,Al_2W_3O_(12)的加入有效降低了复合材料的热膨胀系数。  相似文献   

2.
《Composites Part A》2003,34(11):1023-1027
With mixing different sized SiC particles, high reinforcement content SiCp/Al composites (Vp=50, 60 and 70%) for electronic packaging applications were fabricated by squeeze casting technology. The composites were free of porosity and SiC particles distributed uniformly in the composite. The mean linear coefficients of thermal expansion (20–100 °C) of SiCp/Al composites ranged from 8.3 to 10.8×10−6/°C and decreased with an increase in volume fraction of SiC content. The experimental coefficients of thermal expansion agreed well with predicted values based on Kerner's model. The Brinell hardness increased from 188.6 to 258.0, and the modulus increased from 148 to 204 GPa for the corresponding composites. The bending strengths were larger than 370 MPa, but no obvious trend between bending strength and SiC content was observed.  相似文献   

3.
A new type of hybrid SiC foam–SiC particles–Al composites (VSiC = 53, 56.2 and 59.9%) to be used as an electronic packaging substrate material were fabricated by squeeze casting technique, and their thermal expansion behavior was evaluated. The coefficients of thermal expansion (CTEs) of the hybrid composites in the range of 20–100 °C were found to be between 6.6 and 7.7 ppm/°C. The measured CTEs are much lower than those of SiC particle-reinforced aluminum (SiCp–Al) composites with the same content of SiC because of the characteristic interpenetrating structure of the hybrid composites. A material of such a low CTE is ideal for electronic packaging because of the low thermal mismatch (and therefore, low thermal stresses) between the electronic component and the substrate. To achieve similar CTEs in SiCp–Al composites, the volume fraction of SiC would be much higher than that in the hybrid composites.  相似文献   

4.
《Composites Science and Technology》2006,66(11-12):1793-1802
The tensile properties and thermal expansion behaviors of continuous molybdenum fiber reinforced aluminum matrix composites (Mof/Al) have been studied. The Mof/Al composites containing different volume percents of Mo fibers were processed by diffusion bonding. The strengths of unidirectional Mof/Al composites were close to the rule-of-mixtures. The strengths of 0°/90° dual-directional composites increased with fiber content, while those of 45°/135° composites remained relatively low. The coefficients of thermal expansion (CTEs) of the composites decreased as the fiber content increased, close to the values of Mo fibers. With increasing temperature, the CTEs of unidirectional composites increased, while those of dual-directional composites decreased due to large accumulated thermal stresses. The CTEs of 45°/135° composites were lower than those of 0°/90° composites because of contraction effect. At temperatures above 250 °C, the CTEs of the dual-directional composites gradually increased due to matrix yielding and interfacial decohesion.  相似文献   

5.
In this paper, SiCp/Al composites with high reinforcement content are fabricated by pressureless infiltration with aluminum alloy into porous SiC preforms obtained by cold press forming. Microstructures and particulate distributions are analyzed with scanning electron microscope, X-ray diffraction and energy dispersive spectrometer. The reinforcement volume fraction reaches 65 % by using bimodal particle distributions. The bending strength ranges from 320 to 342 MPa, depending on particle sizes. Due to the intrinsically low thermal conductivity of the matrix, the thermal conductivity of SiCp/Al composites are in the range of 121–143 W m?1 K?1.  相似文献   

6.
Magnesium matrix composites reinforced with two volume fractions (1 and 3%) of SiC particles (1 μm) were successfully fabricated by ultrasonic vibration. Compared with as-cast AZ91 alloy, with the addition of the SiC particles grain size of matrix decreased, while most of the phase Mg17Al12 varied from coarse plates to lamellar precipitates in the SiCp/AZ91 composites. With increasing volume fraction of the SiC particles, grains of matrix in the SiCp/AZ91 composites were gradually refined. The SiC particles were located mainly at grain boundaries in both 1 vol% SiCp/AZ91 composite and 3 vol% SiCp/AZ91 composite. SiC particles inside the particle clusters may be still separated by magnesium. The study of the interface between the SiC particle and the alloy matrix suggested that SiC particles bonded well with the alloy matrix without interfacial reaction. The ultimate tensile strength, yield strength, and elongation to fracture of the SiCp/AZ91 composites were simultaneously improved compared with that of the as-cast AZ91 alloy.  相似文献   

7.
Thermal conductivity of SiCp/Cu composites was usually far below the expectation, which is usually attributed to the low real thermal conductivity of matrix. In the present work, highly pure Cu matrix composites reinforced with acid washed SiC particles were prepared by the pressure infiltration method. The interfacial microstructure of SiCp/Cu composites was characterized by layered interfacial products, including un-reacted SiC particles, a Cu–Si layer, a polycrystalline C layer and Cu–Si matrix. However, no Cu3Si was found in the present work, which is evidence for the hypothesis that the formation of Cu3Si phase in SiC/Cu system might be related to the alloying elements in Cu matrix and residual Si in SiC particles. The thermal conductivity of SiCp/Cu composites was slightly increased with the particle size from 69.9 to 78.6 W/(m K). Due to high density defects, the real thermal conductivity of Cu matrix calculated by H–J model was only about 70 W/(m K). The significant decrease in thermal conductivity of Cu matrix is an important factor for the low thermal conductivity of SiCp/Cu composites. However, even considered the significant decrease of thermal conductivity of Cu matrix, theoretical values of SiCp/Cu composites calculated by H–J model were still higher than the experimental results. Therefore, an ideal particle was introduced in the present work to evaluate the effect of interfacial thermal resistance. The reverse-deduced effective thermal conductivities of ideal particles according to H–J model was about 80 W/(m K). Therefore, severe interfacial reaction in SiCp/Cu composites also leads to the low thermal conductivity of SiCp/Cu composites.  相似文献   

8.
Silicon carbide particle/polystyrene (SiCp/PS) electrospun mats are firstly prepared by electrospinning technology, then to be fabricated the corresponding thermally conductive SiCp/PS composites by the method of “laminating-hot press”. The mass fraction of SiCp and laminating mode of SiCp/PS electrospun mats affecting on the thermal conductivities, dielectric and thermal properties of the composites are investigated. The addition of 32.8 vol% SiCp improves the thermally conductive coefficient λ of pure PS from 0.182 to 0.566 W/m K and thermal diffusivity of pure PS from 0.169 to 0.376 mm2/s, whereas the dielectric constant values still remain at relatively low levels. The thermal stabilities of the SiCp/PS composites are increased with the increasing addition of SiCp. For a given SiCp loading, the SiCp/PS composites from warp–weft arrangement of SiCp/PS electrospun mats possess relative higher thermally conductive coefficient λ and dielectric constant values than those of SiCp/PS composites from warp–warp arrangement of SiCp/PS electrospun mats.  相似文献   

9.
两种粒径颗粒混合增强铝基复合材料的导热性能   总被引:6,自引:1,他引:5       下载免费PDF全文
选用粒径为20μm 和60μm 的SiC 颗粒, 采用挤压铸造方法制备了基体分别为工业纯铝L2 、LD11(Al-12 %Si) 和AlSi20 (Al-(18~21) %Si) 的复合材料, 研究了材料的导热性能。在等比表面积的基础上, 提出了等效颗粒直径的概念, 解决了两种粒径颗粒混合增强铝基复合材料导热率的预测问题。结果表明, SiCP/ Al 复合材料具有较为优异的导热率, 且LD11 基与AlSi20 基复合材料的导热率大于基体合金的导热率, 这与颗粒的等效直径大于临界粒径且颗粒导热率大于基体导热率有关;但复合材料的导热率随着基体中Si 含量的增加而降低。  相似文献   

10.
为研究超声辅助制备工艺对SiC_p/7085复合材料界面结合及拉伸性能的影响,用机械搅拌、机械搅拌+超声施振、超声施振3种工艺制备体积分数为10%的SiC_p/7085复合材料.采用扫描电子显微镜(SEM)、能谱(EDS)研究各工艺对SiC_p/7085复合材料的界面微观组织和拉伸性能的影响.实验结果表明:机械搅拌工艺促进大颗粒(80μm)与熔体结合,但产生了粗大Al4C3界面产物包裹层,且难改善小颗粒(37μm)与熔体界面结合差的问题;超声施振能促进界面反应,生成尺寸细小、排列规整、紧密的Mg O、Mg Al2O4界面强化相覆盖层,有效改善小颗粒与熔体界面结合;相比于7085铝合金,机械搅拌不能改善SiC_p/7085复合材料拉伸性能,而超声施振的加入能显著提升材料拉伸性能.  相似文献   

11.
Abstract

By incorporating the dislocation strengthening effect into the Mori–Tanaka method, a new hybrid approach is developed in the present paper for calculating the deformation response of SiCp/Al composites. The diameters of the particles are 1, 5, 20 and 56 μm. Both numerical and experimental results indicate a close relationship between the particle size and the deformation behaviour of the composites at a constant particle volume fraction. The yield strength and plastic work hardening rate of the composites increase with decreasing particle size. The predicted stress–strain behaviour of the composites is in qualitative agreement with the experimental results. By incorporating Weibull statistics for particle fracture, the results simulated are agreed well with the experimental results for particle size >5 μm.  相似文献   

12.
The present work aims to investigate the influences of thermal residual stresses and material properties on the thermomechanical deformation behavior of Al–B4C composites. Boron carbide-reinforced aluminum matrix composites having 4, 8, and 12 vol% boron carbide were fabricated using squeeze liquid stir casting method for experimental characterization of their microstructure, effective elastic moduli and effective CTEs at room temperature as well as elevated temperatures. Next, the thermomechanical behavior of fabricated composites was investigated using finite element modeling. The effects of thermal residual stresses on the effective material properties were examined by simulating the cooling process of MMCs from processing temperature to room temperature. The effective elastic moduli and the effective CTEs were predicted considering linear elastic as well as elastoplastic deformation of aluminum matrix, and the results obtained were compared with the experimental values. The effects of voids on effective material behavior are studied by simulating the void growth and nucleation using Gurson–Tvergaard–Needleman model.  相似文献   

13.
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.  相似文献   

14.
One kind of (submicron + micron) bimodal size SiCp/AZ91 composite was fabricated by the stir casting technology. After hot deformation process, the influence of bimodal size particles on microstructures and mechanical properties of AZ91 matrix was investigated by comparing with monolithic A91 alloy, submicron SiCp/AZ91 and micron SiCp/AZ91 composites. The results show that micron particles can stimulate dynamic recrystallized nucleation, while submicron particles may pin grain boundaries during the hot deformation process, which results in a significant grain refinement of AZ91 matrix. Compared to submicron particles, micron particles are more conducive to grain refinement through stimulating the dynamic recrystallized nucleation. Besides, the yield strength of bimodal size SiCp/AZ91 composite is higher than that of single-size particle reinforced composites. Among the strengthening mechanisms of bimodal size particle reinforced composite, it is found that grain refinement and dislocation strengthening mechanism play a larger role on improving the yield strength.  相似文献   

15.
The deformation behaviors below 0.2% offset yield stress in some silicon carbide particulate reinforced aluminum composites (SiCp/Al) and their unreinforced matrix alloys were investigated experimentally in this work. The results of the study showed that incorporation of SiC particulate into aluminum matrix can enhance the plastic flow stress (PFS) in macroplastic stage but slightly lower PFS in microplastic stage. With increase in the volume fraction of SiC particulate (Vp), the 0.2% offset yield stress (σ0.2) increases while the resistance to microplastic deformation (σ10−5) first decreases and then increases. The composite with smaller particle size presents higher PFS both in micro- and macro-plastic stages. It was also found that heat treatment remarkably influence both micro- and macro-plastic behaviors of the composites. Quenching followed by artificial aging can significantly enhance PFS both in micro- and macro-plastic stages for the age hardened alloy based composites (SiCp/2024Al) but has no obvious effect for the non-age hardened alloy based composites (SiCp/Al). For both the SiCp/2024Al composite and unreinforced 2024Al alloy, PFS exist a ‘peak value’ with variation of aging time, implying that like the conventional yield strength, PFS in microplastic stage of the composite is also strongly controlled by the precipitates formed in matrix during aging treatment. The effects of thermal cycling on PFS are dependent to the Vp. In large Vp case (35%), with increase in cyclic number PFS slightly decreases but in small Vp case (15%) PFS slightly increases as the cyclic number increases. The PFS in microplastic stage is very sensitive to the microstructure features. The lower residual thermal stresses, small density of moveable dislocations and harder matrix would be beneficial to the increase of PFS in microplastic stage in the composites.  相似文献   

16.
Metal matrix composites (MMCs) were produced using a powder metallurgy method. Fatigue and tensile specimens were extruded and rolled before being machined. The matrix of the composite was a 6061 Al alloy and the reinforcement was 180 mesh SiC particle (SiCp). Different weight fractions (10, 20 and 30 wt%) of 180 mesh SiCp were introduced to determine the influence of the SiCp content on the tensile and low-cycle properties. Reasonable Coffin-Manson plots have been obtained in low-cycle fatigue. More accountable data of fatigue ductility exponents and fatigue ductility coefficients have been obtained for the composites and monolithic Al alloy. Increasing the content of SiCp has been shown to encourage the development of particle cracks and resulted in the degradation of fatigue properties. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
SiCp/Al复合材料制孔崩边缺陷及其评价方法   总被引:1,自引:0,他引:1       下载免费PDF全文
对中高体积分数碳化硅颗粒增强铝基(SiCp/Al)复合材料制孔崩边缺陷进行了三维试验观测和统计分析,建立了制孔崩边缺陷模型,提出了一种基于崩边体积的SiCp/Al复合材料崩边缺陷程度评价方法。研究结果表明:崩边缺陷是SiCp/Al复合材料制孔的主要缺陷,且崩边缺陷主要产生在制孔出口处。采用该方法能够对不同参数下的制孔崩边缺陷程度进行客观真实的评价,对优化制孔工艺参数具有一定的指导意义。  相似文献   

18.
研究使用功率超声制备SiCp颗粒增强铝基复合材料的新方法,并对所制得不同粒度SiCp的复合材料进行了组织分析和磨损性能的测试。实验结果表明,利用功率超声可以制备出颗粒在基体中均匀分布的复合材料,可增加SiCp的复合量,使SiCp与基体间润湿性良好。小粒度的SiCp颗粒增强复合材料较大尺寸的复合材料的耐磨性要好。  相似文献   

19.
A new cooling crystallization method is applied to plate copper on SiCp. Cu(NO3)2·3H2O is crystallized on SiCp by decreasing the solution temperature, and is heat-treated to obtain CuO coating which is finally reduced to copper coating. Based on the optimizing of SiCp content and CuO reduction temperature, the effects of copper plating on SiCp on the spreading and infiltration of AlSi12 alloy melt are studied. The results show that the optimum coating effect is achieved when the SiCp content is 11.63% and the reduction temperature of CuO is 475 °C. The spreading area of AlSi12 alloy melt on the 15 μm copper-coated SiCp increases by 53.27% compared to the uncoated SiCp when holds at 950 °C for 20 min, indicating that copper plating has a significant improvement on the wettability of AlSi12 melt and SiCp. Additionally, infiltration preparation of copper-plated SiCp/Al alloy composites is achieved at a pressure of 0.3 MPa, but not under pressureless conditions. The main reason for this is the granular Cu on SiCp cannot form a complete Cu film. Therefore, the formation of complete Cu films on SiCp is presumed to be an important development direction for solving the problem of infiltration preparing ultrathick SiCp/Al composites.  相似文献   

20.
采用微弧氧化技术对SiC体积分数分别为17vol%和55vol%的两种SiCp/Al复合材料进行处理。分析了两种材料微弧氧化膜的组织、形貌、相组成,测定了膜层的粗糙度、显微硬度、结合力,考察了膜层的耐磨和耐蚀性。结果表明:SiC的含量对SiCp/Al复合材料微弧氧化膜的表面形貌、粗糙度、相组成、结合力及摩擦磨损性能均有影响。17vol%SiCp/2009Al复合材料的微弧氧化膜较55vol%SiCp/6061Al复合材料更平整,微孔大小更均匀。55vol%SiCp/6061Al复合材料的微弧氧化膜的粗糙度(3.308 μm)比17vol%SiCp/2009Al复合材料(2.140 μm)大,表面熔融物堆积更多。两种材料的微弧氧化膜中均含有Al、Si、O、C、W等元素。55vol%SiCp/6061Al复合材料的微弧氧化膜中Mullite(SiO2-Al2O3)相、α-Al2O3相、β-Al2O3相较多。17vol%SiCp/2009Al复合材料的微弧氧化膜的结合(38.55 N)较55vol%SiCp/6061Al(11.5 N)复合材料好。55vol%SiCp/6061Al复合材料的微弧氧化膜摩擦系数较大,磨损较严重。微弧氧化处理能有效改善两种SiCp/Al复合材料的耐蚀性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号