首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable gene transfer to human pluripotent hematopoietic stem cells (PHSCs) is an attractive strategy for the curative treatment of many genetic hematologic disorders. In clinical trials, the levels of gene transfer to this cell population have generally been low, reflecting deficiencies in both the vector systems and transduction conditions. In this study, we have used a pseudotyped murine retroviral vector to transduce human CD34(+) cells purified from bone marrow (BM) and umbilical cord blood (CB) under optimized conditions. After transduction, 71% to 97% of the hematopoietic cells were found to express a low-affinity nerve growth factor receptor (LNGFR) marker gene. Six weeks after transplantation into immunodeficient NOD/LtSz-scid/scid (NOD/SCID) mice, LNGFR expression was detected in 6% to 57% of CD45(+) cells in eight of nine engrafted animals. Moreover, proviral DNA was detected in 8.3% to 45% of secondary colonies derived from BM cells of engrafted NOD/SCID mice. Our data show consistent transduction of SCID-repopulating cells (SRCs) and suggest that the efficiency of gene transfer to human hematopoietic repopulating cells can be improved using existing retroviral vector systems and carefully optimized transduction conditions.  相似文献   

2.
Many diseases might be treated by gene therapy targeted to the hematopoietic system, but low rates of gene transfer achieved in humans and large animals have limited the application of this technique. We have developed a competitive hematopoietic repopulation assay in baboons to evaluate methods for improving gene transfer and have used this method to compare gene transfer rates for retroviral vectors having an envelope protein (pseudotype) from amphotropic murine retrovirus with similar vectors having an envelope protein derived from gibbon ape leukemia virus (GALV). We hypothesized that vectors with a GALV pseudotype might perform better based on our previous work with cultured human hematopoietic cells. CD34(+) marrow cells from each of four untreated baboons were divided into two equal portions that were cocultivated for 48 hours with packaging cells producing equivalent titers of either amphotropic or GALV pseudotyped vectors containing the neo gene. The vectors contained small sequence differences to allow differentiation of cells genetically marked by the different vectors. Nonadherent and adherent cells from the cultures were infused into animals after they received a myeloablative dose of total body irradiation. Polymerase chain reaction (PCR) analysis for neo gene-specific sequences in colony-forming unit-granulocyte-macrophage from cell populations used for transplant showed gene transfer rates of 2.7%, 7.1%, <15%, and 3.9% with the amphotropic vectors and 7.1%, 11.3%, <15%, and 26.4% with the GALV pseudotyped vector. PCR analysis of peripheral blood and marrow cells after engraftment showed the neo gene to be present in all four animals analyzed at levels between 0.1% and 5%. Overall gene transfer efficiency was higher with the GALVpseudotyped vector than with the amphotropic vectors. Southern blot analysis in one animal confirmed a gene transfer efficiency of between 1% and 5%. The higher gene transfer efficiency with the GALV-pseudotyped vector correlated with higher levels of GALV receptor RNA compared with the amphotropic receptor in CD34(+) hematopoietic cells. These results show that GALV-pseudotyped vectors are capable of transducing baboon marrow repopulating cells and may allow more efficient gene transfer rates for human gene therapy directed at hematopoietic cells. In addition, our data show considerable differences in gene transfer efficiency between individual baboons, suggesting that a competitive repopulation assay will be critical for evaluation of methods designed to improve gene transfer into hematopoietic stem cells.  相似文献   

3.
We isolated hematopoietic stem cells (HSC) from mice treated with cyclophosphamide (CY) and granulocyte colony-stimulating factor (G-CSF). All mobilized multipotent progenitor activity was contained in two populations: Thy-1(lo) Sca-1+ Lin- Mac-1- CD4- c-kit+ long-term reconstituting progenitors and Thy-1(lo) Sca-1+ Lin- Mac-1(lo) CD4- transiently reconstituting progenitors. CY/G-CSF treatment drove both long-term and transient multipotent progenitors into cycle, leading to a more than 12-fold expansion in the number of long-term self-renewing HSC prior to mobilization. After CY and 2 days of G-CSF treatment the number of bone marrow HSC began to decline and the number of blood and splenic HSC increased. HSC continued to proliferate in the bone marrow and spleen through 8 days of G-CSF treatment, but HSC released into the blood tended to be in G0/G1 phase. Mobilized multipotent progenitors isolated from the spleen were less efficient than normal bone marrow multipotent progenitors in engrafting irradiated mice but did not differ in colony forming unit-spleen (CFU-S) activity or single cell in vitro assays of primitive progenitor activity. The data suggest that mobilized HSC isolated from the spleen are less efficient at homing to and engrafting the bone marrow of irradiated recipient mice.  相似文献   

4.
5.
Recent studies have opened the possibility that quiescent, G0/G1 hematopoietic stem cells (HSC) can be gene transduced; lentiviruses (such as HIV type 1, HIV) encode proteins that permit transport of the viral genome into the nucleus of nondividing cells. We and others have recently demonstrated efficient transduction by using an HIV-1-based vector gene delivery system into various human cell types including human CD34(+) cells or terminally differentiated neurons. Here we compare the transduction efficiency of two vectors, HIV-based and murine leukemia virus (MuLV)-based vectors, on untreated and highly purified human HSC subsets that are virtually all in G0/G1. The HIV vector, but not MuLV vector supernatants, transduced freshly isolated G0/G1 HSC from mobilized peripheral blood. Single-step transduction using replication-defective HIV resulted in HSC that expressed the green fluorescent protein (GFP) transgene while retaining their stem cell phenotype; clonal outgrowths of these GFP+ HSC on bone marrow stromal cells fully retained GFP expression for at least 5 weeks. MuLV-based vectors did not transduce resting HSC, as measured by transgene expression, but did so readily when the HSC were actively cycling after culture in vitro for 3 days in a cytokine cocktail. These results suggest that resting HSC may be transduced by lentiviral-based, but not MuLV, vectors and maintain their primitive phenotype, pluripotentiality, and at least in vitro, transgene expression.  相似文献   

6.
Galactocerebrosidase (GALC) is responsible for the lysosomal catabolism of certain galactolipids, including galactosylceramide and psychosine. Patients with GALC deficiency have an autosomal recessive disorder known as globoid cell leukodystrophy (GLD) or Krabbe disease. Storage of undegraded glycolipids results in defective myelin and the characteristic globoid cells observed on pathological examination of the central and peripheral nervous systems. Most patients have the infantile form of GLD, although older individuals are also diagnosed. Recently the human, mouse, and canine GALC genes were cloned, and mutations causing GLD have been identified. We now describe the construction of a vector containing human GALC cDNA (MFG-GALC), and the transduction of cultured skin fibroblasts from molecularly characterized Krabbe disease patients, as well as rat brain astrocytes and human CD34(+) hematopoietic cells, using retrovirus produced by the psi-CRIP amphotropic packaging cell line. The transduced fibroblasts showed extremely high GALC activity (up to 20,000 times pretreatment levels, about 100 times normal). GALC was secreted into the media and was taken up by untransduced fibroblasts from the same or a different patient. Mannose-6-phosphate receptor-mediated uptake was only partially responsible for the efficient transfer of GALC to neighboring cells. Additional studies confirmed the presence of normal GALC cDNA and mRNA in the transduced cells. The GALC produced by the transduced cells and donated to neighboring untransduced cells was localized to lysosomes as demonstrated by the normal metabolism of [14C]stearic acid-labeled galactosylceramide produced from endocytosed [14C]sulfatide.  相似文献   

7.
Myelosuppression is the dose-limiting toxicity for nitrosourea chemotherapy due to low levels of the DNA repair protein O6-alkylguanine-DNA alkyltransferase in myeloid precursors. We have shown that high-efficiency myeloproliferative sarcoma virus (vM5MGMT)-mediated transduction of the human MGMT cDNA into murine bone marrow (BM) cells leads to high MGMT expression and increased progenitor resistance to 1,3-bis-(2-chloroethyl) nitrosourea (BCNU) in vitro immediately after infection and after BM transplantation. These experiments were designed to increase MGMT expression in human hematopoietic progenitors. CD34(+) BM cells were isolated over an immunoaffinity column (CEPRATE, CellPro, Inc.), resulting in a mean 66-fold enrichment in clonogenic progenitors (colony-forming unit granulocyte-macrophage + burst-forming unit erythroid + colony-forming unit granulocyte erythroid macrophage = megakaryocyte), with an average progenitor yield of 58 +/- 11.5% and a final population that was 54% CD34(+). Seventy % of progenitors derived from CD34(+) cells were transduced after coculture with AM12-vM5MGMT retroviral producers. vM5MGMT-transduced progenitors were over 2-fold more resistant to concentrations of BCNU between 30 and 50 micrometer than were concurrently LacZ-transduced progenitors (P < 0.003). In vitro selection of transduced, cytokine-stimulated CD34(+) cells with 20 micrometer BCNU resulted in survival of 4.7% of MGMT+ clonogenic progenitors compared to 0.05% of LacZ+ progenitors. These studies indicate that MGMT-transduced human hematopoietic progenitors have increased resistance to nitrosoureas, and in a clinical transplant setting, this strategy may reduce alkylating agent myelosuppression.  相似文献   

8.
The ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo-expanded CB cells, purified CD34(+) cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo-expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34(+) cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo-expanded versus the fresh CB cells (CD45(+) repopulation in NOD/SCIDs BM: 3. 7% +/- 1.2% v 26.2% +/- 5.9%, respectively, at 20 days posttransplantation; P <.005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% +/- 1.7% of CD45(+) cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo-expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45(+) and CD45(+)/CD34(+) cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo-expanded samples were found. The analysis of the engrafted CD45(+) cells showed that both the fresh and the in vitro-incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.  相似文献   

9.
In vivo expansion and multilineage outgrowth of human immature hematopoietic cell subsets from umbilical cord blood (UCB) were studied by transplantation into hereditary immunodeficient (SCID) mice. The mice were preconditioned with Cl2MDP-liposomes to deplete macrophages and 3.5 Gy total body irradiation (TBI). As measured by immunophenotyping, this procedure resulted in high levels of human CD45(+) cells in SCID mouse bone marrow (BM) 5 weeks after transplantation, similar to the levels of human cells observed in NOD/SCID mice preconditioned with TBI. Grafts containing approximately 10(7) unfractionated cells, approximately 10(5) purified CD34+ cells, or 5 x 10(3) purified CD34+CD38- cells yielded equivalent numbers of human CD45+ cells in the SCID mouse BM, which contained human CD34+ cells, monocytes, granulocytes, erythroid cells, and B lymphocytes at different stages of maturation. Low numbers of human GpA+ erythroid cells and CD41+ platelets were observed in the peripheral blood of engrafted mice. CD34+CD38+ cells (5 x 10(4)/mouse) failed to engraft, whereas CD34- cells (10(7)/mouse) displayed only low levels of chimerism, mainly due to mature T lymphocytes. Transplantation of graded numbers of UCB cells resulted in a proportional increase of the percentages of CD45+ and CD34+ cells produced in SCID mouse BM. In contrast, the number of immature, CD34+CD38- cells produced in vivo showed a second-order relation to CD34+ graft size, and mice engrafted with purified CD34+CD38- grafts produced 10-fold fewer CD34+ cells without detectable CD34+CD38- cells than mice transplanted with equivalent numbers of unfractionated or purified CD34+ cells. These results indicate that SCID repopulating CD34+CD38- cells require CD34+CD38+ accessory cell support for survival and expansion of immature cells, but not for production of mature multilineage progeny in SCID mouse BM. These accessory cells are present in the purified, nonrepopulating CD34+CD38+ subset as was directly proven by the ability of this fraction to restore the maintenance and expansion of immature CD34+CD38- cells in vivo when cotransplanted with purified CD34+CD38- grafts. The possibility to distinguish between maintenance and outgrowth of immature repopulating cells in SCID mice will facilitate further studies on the regulatory functions of accessory cells, growth factors, and other stimuli. Such information will be essential to design efficient stem cell expansion procedures for clinical use.  相似文献   

10.
It is now accepted from studies in animal models that hematopoietic stem cells emerge in the para-aortic mesoderm-derived aorta-gonad-mesonephros region of the vertebrate embryo. We have previously identified the equivalent primitive hematogenous territory in the 4- to 6-week human embryo, under the form of CD34(+)CD45(+)Lin- high proliferative potential hematopoietic cells clustered on the ventral endothelium of the aorta. To characterize molecules involved in initial stem cell emergence, we first investigated the expression in that territory of known early hematopoietic regulators. We herein show that aorta-associated CD34(+) cells coexpress the tal-1/SCL, c-myb, GATA-2, GATA-3, c-kit, and flk-1/KDR genes, as do embryonic and fetal hematopoietic progenitors later present in the liver and bone marrow. Next, CD34(+)CD45(+) aorta-associated cells were sorted by flow cytometry from a 5-week embryo and a cDNA library was constructed therefrom. Differential screening of that library with total cDNA probes obtained from CD34(+) embryonic liver cells allowed the isolation of a kinase-related sequence previously identified in KG-1 cells. In addition to emerging blood stem cells, KG-1 kinase is also strikingly expressed in all developing endothelial cells in the yolk sac and embryo, which suggests its involvement in the genesis of both hematopoietic and vascular cell lineages in humans.  相似文献   

11.
Mobilized CD34(+) cells from human peripheral blood (PB) are increasingly used for hematopoietic stem-cell transplantation. However, the mechanisms involved in the mobilization of human hematopoietic stem and progenitor cells are largely unknown. To study the mobilization of human progenitor cells in an experimental animal model in response to different treatment regimens, we injected intravenously a total of 92 immunodeficient nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with various numbers of granulocyte colony-stimulating factor (G-CSF) -mobilized CD34(+) PB cells (ranging from 2 to 50 x 10(6) cells per animal). Engraftment of human cells was detectable for up to 6.5 months after transplantation and, depending on the number of cells injected, reached as high as 96% in the bone marrow (BM), displaying an organ-specific maturation pattern of T- and B-lymphoid and myeloid cells. Among the different mobilization regimens tested, human clonogenic cells could be mobilized from the BM into the PB (P = .019) with a high or low dose of human G-CSF, alone or in combination with human stem-cell factor (SCF), with an average increase of 4.6-fold over control. Therefore, xenotransplantation of human cells in NOD/SCID mice will provide a basis to further study the mechanisms of mobilization and the biology of the mobilized primitive human hematopoietic cell.  相似文献   

12.
13.
Prompt reconstitution of hematopoiesis after cytoreductive therapy is essential for patient recovery and may have a positive impact on long-term prognosis. We examined the role of the p53 tumor suppressor gene in hematopoietic recovery in vivo after treatment with the cytotoxic drug 5-fluorouracil (5-FU). We used p53 knock-out (p53-/-) and wild-type (p53+/+) mice injected with 5-FU as the experimental model. Analysis of the repopulation ability and clonogenic activity of hematopoietic stem cells (HSCs) and their lineage-committed descendants showed a greater number of HSCs responsible for reconstitution of lethally irradiated recipients in p53-/- bone marrow cells (BMCs) recovering after 5-FU treatment than in the corresponding p53+/+ BMCs. In post-5-FU recovering BMCs, the percentage of HSC-enriched Lin- Sca-1(+) c-Kit+ cells was about threefold higher in p53-/- than in p53+/+ cells. Although the percentage of the most primitive HSCs (Lin- Sca-1(+) c-Kit+ CD34(low/-)) did not depend on p53, the percentage of multipotential HSCs and committed progenitors (Lin- Sca-1(+) c-Kit+ CD34(high/+)) was almost fourfold higher in post-5-FU recovering p53-/- BMCs than in their p53+/+ counterparts. The pool of HSCs from 5-FU-treated p53-/- BMCs was exhausted more slowly than that from the p53+/+ population as shown in vivo using pre-spleen colony-forming unit (CFU-S) assay and in vitro using long-term culture-initiating cells (LTC-ICs) and methylcellulose replating assays. Clonogenic activity of various lineage-specific descendants was significantly higher in post-5-FU regenerating p53-/- BMCs than in p53+/+ BMCs, probably because of their increased sensitivity to growth factors. Despite all these changes and the dramatic difference in sensitivity of p53-/- and p53+/+ BMCs to 5-FU-induced apoptosis, lineage commitment and differentiation of hematopoietic progenitors appeared to be independent of p53 status. These studies suggest that suppression of p53 function facilitates hematopoietic reconstitution after cytoreductive therapy by: (1) delaying the exhaustion of the most primitive HSC pool, (2) stimulating the production of multipotential HSCs, (3) increasing the sensitivity of hematopoietic cells to growth factors, and (4) decreasing the sensitivity to apoptosis.  相似文献   

14.
15.
16.
Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 x TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-alpha and interferon (IFN)-gamma produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-gamma-producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-gamma-producing CD8+ T cells. Thus, in the absence of IFN-gamma and/or TNF/LT-alpha, exhaustion of virus-specific T cells was not hampered.  相似文献   

17.
CD164 is a novel 80- to 90-kD mucin-like molecule expressed by human CD34(+) hematopoietic progenitor cells. Our previous results suggest that this receptor may play a key role in hematopoiesis by facilitating the adhesion of CD34(+) cells to bone marrow stroma and by negatively regulating CD34(+) hematopoietic progenitor cell growth. These functional effects are mediated by at least two spatially distinct epitopes, defined by the monoclonal antibodies (MoAbs), 103B2/9E10 and 105A5. In this report, we show that these MoAbs, together with two other CD164 MoAbs, N6B6 and 67D2, show distinct patterns of reactivity when analyzed on hematopoietic cells from normal human bone marrow, umbilical cord blood, and peripheral blood. Flow cytometric analyses revealed that, on average, 63% to 82% of human bone marrow and 55% to 93% of cord blood CD34(+) cells are CD164(+), with expression of the 105A5 epitope being more variable than that of the other identified epitopes. Extensive multiparameter flow cytometric analyses were performed on cells expressing the 103B2/9E10 functional epitope. These analyses showed that the majority (>90%) of CD34(+) human bone marrow and cord blood cells that were CD38(lo/-) or that coexpressed AC133, CD90(Thy-1), CD117(c-kit), or CD135(FLT-3) were CD164(103B2/9E10)+. This CD164 epitope was generally detected on a significant proportion of CD34(+)CD71(lo/-) or CD34(+)CD33(lo/-) cells. In accord with our previous in vitro progenitor assay data, these phenotypes suggest that the CD164(103B2/9E10) epitope is expressed by a very primitive hematopoietic progenitor cell subset. It is of particular interest to note that the CD34(+)CD164(103B2/9E10)lo/- cells in bone marrow are mainly CD19(+) B-cell precursors, with the CD164(103B2/9E10) epitope subsequently appearing on CD34(lo/-)CD19(+) and CD34(lo/-)CD20(+) B cells in bone marrow, but being virtually absent from B cells in the peripheral blood. Further analyses of the CD34(lo/-)CD164(103B2/9E10)+ subsets indicated that one of the most prominent populations consists of maturing erythroid cells. The expression of the CD164(103B2/9E10) epitope precedes the appearance of the glycophorin C, glycophorin A, and band III erythroid lineage markers but is lost on terminal differentiation of the erythroid cells. Expression of this CD164(103B2/9E10) epitope is also found on developing myelomonocytic cells in bone marrow, being downregulated on mature neutrophils but maintained on monocytes in the peripheral blood. We have extended these studies further by identifying Pl artificial chromosome (PAC) clones containing the CD164 gene and have used these to localize the CD164 gene specifically to human chromosome 6q21.  相似文献   

18.
Retroviral gene transfer of the glucocerebrosidase gene to hematopoietic progenitor and stem cells has shown promising results in animal models and corrected the enzyme deficiency in cells from Gaucher patients in vitro. Therefore, a clinical protocol was initiated to explore the safety and feasibility of retroviral transduction of peripheral blood (PB) or bone marrow (BM) CD34+ cells with the G1Gc vector. This vector uses the viral LTR promoter to express the human glucocerebrosidase cDNA. Three adult patients have been entered with follow-up of 6-15 months. Target cells were G-CSF-mobilized and CD34-enriched PB cells or CD34-enriched steady state BM cells, and were transduced ex vivo for 72 hr. Patient 1 had PB cells transduced in the presence of autologous stromal marrow cells. Patient 2 had PB cells transduced in the presence of autologous stroma, IL-3, IL-6, and SCF. Patient 3 had BM cells transduced in the presence of autologous stroma, IL-3, IL-6, and SCF. At the end of transduction, the cells were collected and infused immediately without any preparative treatment of the patients. The transduction efficiency of the CD34+ cells at the end of transduction was approximately 1, 10, and 1 for patients 1, 2, and 3, respectively, as estimated by semiquantitative PCR on bulk samples and PCR analysis of individual hematopoietic colonies. Gene marking in vivo was demonstrated in patients 2 and 3. Patient 2 had vector-positive PB granulocytes and mononuclear bone marrow cells at 1 month postinfusion and positive PB mononuclear cells at 2 and 3 months postinfusion. Patient 3 had a positive BM sample at 1 month postinfusion but was negative thereafter. These results indicate that gene-marked cells can engraft and persist for at least 3 months postinfusion, even without myeloablation. However, the level of corrected cells (<0.02%) is too low to result in any clinical benefit, and glucocerebrosidase enzyme activity did not increase in any patient following infusion of transduced cells. Modifications of vector systems and transduction conditions, along with partial myeloablation to allow higher levels of engraftment, may be necessary to achieve beneficial levels of correction in patients with Gaucher disease.  相似文献   

19.
The antitumor activity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is limited by the O6-alkylguanine-DNA alkyltransferase (ATase) in tumor cells and by delayed myelosuppression. Inactivation of neoplastic ATase by O6-benzylguanine (BG) improves the therapeutic index for BCNU. We have demonstrated previously that BG + BCNU-induced myelosuppression in mice is reduced by expression of the BG-resistant ATase ada in murine bone marrow. We have now generated an amphotropic retrovirus containing the ada gene and tested the effectiveness of ada expression in preventing BG + BCNU cytotoxicity in human hematopoietic progenitor cells. A retroviral producer clone with a biological titer of 6.5 x 10(4) colony-forming units/ml and 4.4 pmol ATase/mg protein was used for transduction of bone marrow. Cocultivation of these ada producer cells with progenitor cells from six normal individuals resulted in 1.9-3. 9-fold protection against BG + BCNU-induced cytotoxicity in committed progenitor cell assays. Furthermore, this cytoprotective effect was associated with a high transduction efficiency (40%) and a 2-fold increase of ATase activity in the surviving committed progenitor cell colonies. These data provide a basis for testing the clinical effectiveness of retroviral ada gene transfer into hematopoietic cells to increase the therapeutic index of BG + BCNU.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号