首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Spectral tuning by visual pigments involves the modulation of the physical properties of the chromophore (11-cis-retinal) by amino acid side chains that compose the chromophore-binding pocket. We identified 12 amino acid residues in the human blue cone pigment that might induce the required green-to-blue opsin shift. The simultaneous substitution of nine of these sites in rhodopsin (M86L, G90S, A117G, E122L, A124T, W265Y, A292S, A295S, and A299C) shifted the absorption maximum from 500 to 438 nm, accounting for 2,830 cm-1, or 80%, of the opsin shift between rhodopsin and the blue cone pigment. Raman spectroscopy of mutant pigments shows that the dielectric character and architecture of the chromophore-binding pocket are specifically altered. An increase in the number of dipolar side chains near the protonated Schiff base of retinal increases the ground-excited state energy gap via long range dipole-dipole Coulomb interaction. In addition, the W265Y substitution causes a decrease in solvent polarizability near the chromophore ring structure. Finally, two substitutions on transmembrane helix 3 (A117G and E122L) act in combination with the other substitutions to alter the binding-pocket structure, resulting in stronger interaction of the protonated Schiff base group with the surrounding dipolar groups and the counterion. Taken together, these results identify the amino acid side chains and the underlying physical mechanisms responsible for a majority of the opsin shift in blue visual pigments.  相似文献   

2.
Activation of the visual pigment rhodopsin involves both steric and electrostatic interactions between the chromophore and opsin within the retinal-binding site. Removal of the C9 methyl group of 11-cis-retinal inhibits light-dependent activation of the G protein, transducin, suggesting a direct steric contact. More recently, we have shown that steric interactions lead to receptor activation when Gly121 in the middle of transmembrane helix 3 is replaced by larger hydrophobic residues. In order to understand in more detail the role of the C9 methyl group of retinal in the structure and function of rhodopsin, we first studied the properties of recombinant 9-dm-Rho (opsin reconstituted with 11-cis-9-demethylretinal). The 9-dm-Rho pigment displayed a blue-shifted lambdamax, increased hydroxylamine reactivity, and decreased ability to activate transducin. These properties are consistent with the hypothesis that the C9 methyl group is a crucial structural anchor for the correct docking of the chromophore in its binding site. Next, we investigated the possible interaction between Gly121 of opsin and the C9 methyl group of retinal by characterizing recombinant pigments produced by combining mutant opsins (G121A, -V, -I, -L, and -W) with 11-cis-9-demethylretinal. Mutant opsins G121I, -L, and -W failed to bind the chromophore. However, the double mutant G121L/F261A bound 11-cis-9-demethylretinal to form a stable pigment with a lambdamax of 451 nm. When activity was assayed in membranes, the reduction in transducin activation by 9-dm-Rho caused by the lack of a C9 methyl group on the chromophore could be partially restored by replacing Gly121 with a bulky residue (leucine, isoleucine, or tryptophan). These results support a model of receptor activation that involves steric interaction between the C9 methyl group of the chromophore and the opsin in the vicinity of Gly121 on transmembrane helix 3.  相似文献   

3.
Rhodopsin is constrained in an inactive conformation by interactions with 11-cis-retinal including formation of a protonated Schiff base with Lys296. Upon photoisomerization, major structural rearrangements that involve protonation of the active site Glu113 and cytoplasmic acidic residues, including Glu134, lead to the formation of the active form of the receptor, metarhodopsin II b, which decays to opsin. However, an activated receptor may be generated without illumination by addition of all-trans-retinal or its analogues to opsin, as measured in this study by the increased phosphorylation of opsin by rhodopsin kinase. The potency of stimulation depended on the chemical and isomeric nature of the analogues and the length of the polyene chain with all-trans-C17 aldehyde and all-trans-retinal being the most active and trans-C12 aldehyde being the least active. Certain cis-isomers, 11-cis-13-demethyl-retinal and 9-cis-C17 aldehyde, were also active. Most of the retinal analogues tested did not regenerate a spectrally identifiable pigment, and many were incapable of Schiff base formation (ketone, stable oximes, and Schiff base-derivatives of retinal). Thus, receptor activation resulted from formation of non-covalent complexes with opsin. pH titrations suggested that an equilibrium exists between partially active (protonated) and inactive (deprotonated) forms of opsin. These findings are consistent with a model in which protonation of one or more cytoplasmic carboxyl groups of opsin is essential for activity. Upon addition of retinoids, the partially active conformation of opsin is converted to a more active intermediate similar to metarhodopsin II b. The model provides an understanding of the structural requirements for opsin activation and an interpretation of the observed activities of natural and experimental opsin mutants.  相似文献   

4.
The apoprotein corresponding to the mammalian photoreceptor rhodopsin has been expressed by using suspension cultures of HEK293S cells in defined media that contained 6-15N-lysine and 2-13C-glycine. Typical yields were 1.5-1.8 mg/liter. Incorporation of 6-15N-lysine was quantitative, whereas that of 2-13C-glycine was about 60%. The rhodopsin pigment formed by binding of 11-cis retinal was spectrally indistinguishable from native bovine rhodopsin. Magic angle spinning (MAS) NMR spectra of labeled rhodopsin were obtained after its incorporation into liposomes. The 15N resonance corresponding to the protonated retinylidene Schiff base nitrogen was observed at 156.8 ppm in the MAS spectrum of 6-15N-lysine-labeled rhodopsin. This chemical shift corresponds to an effective Schiff base-counterion distance of greater than 4 A, consistent with structural water in the binding site hydrogen bonded with the Schiff base nitrogen and the Glu-113 counterion. The present study demonstrates that structural studies of rhodopsin and other G protein-coupled receptors by using MAS NMR are feasible.  相似文献   

5.
In rhodopsin, the 11-cis-retinal chromophore forms a complex with Lys296 of opsin via a protonated Schiff base. Absorption of light initiates the activation of rhodopsin by cis/trans photoisomerization of retinal. Thermal relaxation through different intermediates leads into the metarhodopsin states which bind and activate transducin (Gt) and rhodopsin kinase (RK). all-trans-Retinal also recombines with opsin independent of light, forming activating species of the receptor. In this study, we examined the mechanism by which all-trans-retinal activates opsin. To exclude other amines except active site Lys296 from formation of Schiff bases, we reductively methylated rhodopsin (PM-rhodopsin), which we then bleached to generate PM-opsin. Using spectroscopic methods and a Gt activation assay, we found that all-trans-retinal interacted with PM-opsin, producing a noncovalent complex that activated Gt. The residual nucleotide exchange in Gt catalyzed by opsin was approximately 1/250 lower relative to that of photoactivated rhodopsin (pH 8.0, 23 degrees C). Addition of equimolar all-trans-retinal led to an occupancy of one-tenth of the putative retinal binding site(s) of opsin and enhanced the Gt activation rate 2-fold. When the concentration of all-trans-retinal was increased to saturation, the Gt activation rate of the opsin/all-trans-retinal complex was approximately 1/33 lower compared to that of photoactivated rhodopsin. We conclude that all-trans-retinal can form a noncovalent complex with opsin that activates Gt by different mechanisms than photolyzed rhodopsin.  相似文献   

6.
Dietary deficiency in the retinoid precursors of the visual pigment chromophore 11-cis retinal results in the synthesis of photoreceptor outer segments containing opsin in excess of the vitamin A available for rhodopsin regeneration. This suggests that vitamin A-free opsin may be incorporated into newly synthesized outer segment disc membranes. If this opsin is functionally intact, it should be possible convert it to rhodopsin in vivo by providing the appropriate retinoids, and the resulting rhodopsin should should be able to mediate visual transduction. Experiments were conducted to evaluate this possibility and to identify the rate-limiting steps in photoreceptor recovery from retinoid depletion. Rates were maintained on diets either containing or lacking retinoid precursors of 11-cis retinal for 23 weeks, at which time outer segment opsin content greatly exceeded the availability of visual cycle retinoids in the retina. The retinoid-deprived animals were then each given a single intramuscular injection of all-trans retinol. At various time intervals after retinol administration, electroretinograms (ERGs) were recorded on some rats, and retinal rhodopsin contents were determined in others. At similar time intervals, blood and retinal pigment epithelial (RPE) retinoid levels and photoreceptor outer segment size were also determined. No significant increase in retinal rhodopsin content was observed up to 8 hr after injection, despite the fact that by 3 hr, blood retinol levels had recovered to more than 30% of normal. By 1 day after injection, however, rhodopsin levels had recovered to 30% of normal and ERG responses showed increases in visual sensitivity commensurate with the recovery of rhodopsin. The lag in rhodopsin recovery was apparently due to delayed uptake of retinol from the blood by the RPE. Photoreceptor outer segment size was reduced by over 50% in the retinoid- deprived rats and did not begin to recover by 1 day. By 1 week, however, outer segment size had returned to an average of 65% of normal. Commensurate with this regrowth of the outer segments, both rhodopsin levels and visual sensitivity increased between 1 and 7 days after vitamin A administration. Because the rates of recovery in rhodopsin levels and visual sensitivity greatly exceeded the normal rate of new opsin synthesis at short time intervals after vitamin A repletion, it appears that the opsin incorporated into the disc membranes of retinoid-deprived rats is able to form functional rhodopsin in vivo when the chromophore is supplied. Regrowth of the outer segments back to their normal size is required for full recovery of visual sensitivity.  相似文献   

7.
Rhodopsin kinase (RK), a rod photoreceptor cytosolic enzyme, plays a key role in the normal deactivation and recovery of the photoreceptor after exposure to light. To date, three different mutations in the RK locus have been associated with Oguchi disease, an autosomal recessive form of stationary night blindness in man characterized in part by delayed photoreceptor recovery [Yamamoto, S. , Sippel, K. C., Berson, E. L. & Dryja, T. P. (1997) Nat. Genet. 15, 175-178]. Two of the mutations involve exon 5, and the remaining mutation occurs in exon 7. Known exon 5 mutations include the deletion of the entire exon sequence [HRK(X5 del)] and a missense change leading to a Val380Asp substitution in the encoded product (HRKV380D). The mutation in exon 7 is a 4-bp deletion in codon 536 leading to premature termination of the encoded polypeptide [HRKS536(4-bp del)]. To provide biochemical evidence for pathogenicity of these mutations, wild-type human rhodopsin kinase (HRK) and mutant forms HRKV380D and HRKS536(4-bp del) were expressed in COS7 cells and their activities were compared. Wild-type HRK catalyzed light-dependent phosphorylation of rhodopsin efficiently. In contrast, both mutant proteins were markedly deficient in catalytic activity with HRKV380D showing virtually no detectible activity and HRKS536(4-bp del) only minimal light-dependent activity. These results provide biochemical evidence to support the pathogenicity of the RK mutations in man.  相似文献   

8.
Difference Fourier transform infrared spectra were recorded between mutants of rhodopsin and their batho products. The pigments studied were single and combined mutants of intramembrane residues of bovine rhodopsin: Asp83, Glu113, Gly120, Gly121, and Glu122. Previous studies [Nagata, T., Terakita, A., Kandori, H., Kojima, D., Shichida, Y., and Maeda, A. (1997) Biochemistry 36, 6164-6170] showed that one of the water molecules which undergoes structural changes in this process forms hydrogen bonds with Glu113 and the Schiff base, and that another water molecule is linked to this structure through the peptide backbone. The present results show that this water molecule is located at the place that is affected by the replacements of Asp83 and Gly120 but only slightly by Gly121 and not at all by Glu122. Asp83 and Gly120 are close to each other, in view of the observations that the carboxylic C=O stretching vibration of Asp83 is affected by the G120A replacement and that each replacement affects the common peptide carbonyl groups. Our results suggest that these residues in the middle of helices B and C are linked-through a hydrogen-bonding network composed of water and the peptide backbone-with the region around Glu113.  相似文献   

9.
Bacteriorhodopsin pigments lacking the retinal-Lys-216 covalent bond were prepared by reconstituting the K216G mutant protein with retinal alkylamine Schiff bases. The procedure follows the approach of Zhukovsky et al. [Zhukovsky, E., Robinson, P., & Oprian, D. (1991) Science 251, 558-560] in the case of visual (rhodopsin) pigments. Reconstitution leads to a mixture of three pigments. One of them, bR(K216G)/566a, absorbs (pH = 6.9) at 566 nm. Its absorption is pH-dependent, exhibiting a purple to blue transition. The pigment's laser-induced photocycle patterns are similar to those of wild-type all-trans-bR. A second component, bR(K216G)/566b, exhibits an independent photocycle reminiscent of that of wild-type 13-cis-bR. A third pigment component, bR(K216G)/630, absorbs around 630 nm. Experiments in the presence of a pH dye indicator show that illumination of bR(K216G)/566 produces a detectable proton gradient. It is concluded that a covalent bond between the retinal chromophore and the protein backbone is not a prerequisite for the basic structure and photochemical features of bR or for its proton pump activity.  相似文献   

10.
Rhodopsin is a member of the large family of G protein-coupled receptors (GPCR's). Constitutive activity of GPCR's, defined as ligand-independent signaling, has been recognized as an important feature of receptor function and has also been implicated in the molecular pathophysiology of a number of human diseases. Rhodopsin has evolved a unique mechanism to minimize receptor basal activity. The chromophore 11-cis-retinal, which acts as an inverse agonist in rhodopsin, is covalently bound to the receptor to ensure extremely low receptor signaling in the dark. In this study, we replaced Met257 in TM helix 6 of opsin with each of the remaining 19 amino acids. Only mutant opsin M257R failed to be expressed in COS-cell membranes. Each of the remaining 18 mutant opsins, with the exception of M257L, was significantly constitutively active. Two mutants in particular, M257Y and M257N, displayed very high levels of constitutive activity. In addition, the double-site mutants with substitutions of both Met257 and Glu113 in TM helix 3 tended to be much more constitutively active than the sums of the activities of the individual single-site mutants. Based on existing structural models of rhodopsin, we conclude that Met257 may form an important and specific interhelical interaction with a highly conserved NPXXY motif in TM helix 7, which stabilizes the inactive receptor conformation by preventing TM helix 6 movement in the absence of all-trans-retinal. Furthermore, we are able to show that the pharmacological properties of the large number (approximately 50) of mutant opsins that we have characterized to date support the two-state model of GPCR function. These results suggest that rhodopsin and other GPCR's share a common mechanism of receptor activation that involves specific changes in helix-helix interactions.  相似文献   

11.
Mutations in the gene encoding rhodopsin, the visual pigment in rod photoreceptors, lead to retinal degeneration in species from Drosophila to man. The pathogenic sequence from rod cell-specific mutation to degeneration of rods and cones remains unclear. To understand the disease process in man, we studied heterozygotes with 18 different rhodopsin gene mutations by using noninvasive tests of rod and cone function and retinal histopathology. Two classes of disease expression were found, and there was allele-specificity. Class A mutants lead to severely abnormal rod function across the retina early in life; topography of residual cone function parallels cone cell density. Class B mutants are compatible with normal rods in adult life in some retinal regions or throughout the retina, and there is a slow stereotypical disease sequence. Disease manifests as a loss of rod photoreceptor outer segments, not singly but in microscopic patches that coalesce into larger irregular areas of degeneration. Cone outer segment function remains normal until >75% of rod outer segments are lost. The topography of cone loss coincides with that of rod loss. Most class B mutants show an inferior-nasal to superior-temporal retinal gradient of disease vulnerability associated with visual cycle abnormalities. Class A mutant alleles behave as if cytotoxic; class B mutants can be relatively innocuous and epigenetic factors may play a major role in the retinal degeneration.  相似文献   

12.
Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation.  相似文献   

13.
Structural changes in the complex formed between photolyzed bovine rhodopsin and a synthetic 11-mer peptide corresponding to the C-terminal region of the transducin alpha-subunit (Gtalpha) were analyzed by means of Fourier transform infrared spectroscopy. A complex with a protonated Schiff base appears at the beginning, accompanying the formation of an alpha-helix. This complex evolves into another which abolishes the original structure but retains the protonated Schiff base. This complex exhibits the same spectral shape as that of the final stable complex with an unprotonated Schiff base. The Fourier transform infrared spectrum for the formation of this final complex was compared to that with transducin [Nishimura, S., Sasaki, J., Kandori, H., Matsuda, T., Fukada, Y., and Maeda, A. (1996) Biochemistry 35, 13267-13271]. A large part of the frequency shifts of the peptide carbonyl vibrations which form upon complex formation with transducin but are absent with the synthetic 11-mer peptide must be structural changes in other sites, such as the nucleotide binding site in Gtalpha. The peptide, like transducin, shows the perturbation of a carboxylic acid in an extremely apolar environment. Some of the changes in the peptide backbone remain in the complex formed with the peptide. These are due to sites where rhodopsin interacts with the C-terminal region of Gtalpha. Specifically, the labeling of the peptide amide corresponding to Leu349 of transducin by 15N reveals weakening of the hydrogen bond of the peptide N-H of Leu349 and/or distortion of a peptide bond between Gly348 and Leu349 upon complex formation.  相似文献   

14.
15.
Absorption of photons by pigments in photoreceptor cells results in photoisomerization of the chromophore, 11-cis-retinal, to all-trans-retinal and activation of opsin. Photolysed chromophore is converted back to the 11-cis-configuration via several enzymatic steps in photoreceptor and retinal pigment epithelial cells. We investigated the levels of retinoids in mouse retina during constant illumination and regeneration in the dark as a means of obtaining more information about the rate-limiting step of the visual cycle and about cycle intermediates that could be responsible for desensitization of the visual system. All-trans-retinal accumulated in the retinas during constant illumination and following flash illumination. Decay of all-trans-retinal in the dark following constant illumination occurred without substantial accumulation of all-trans-retinal, generated by constant approximately equal to visual pigment regeneration (t1/2 approximately 5 and t1/2 approximately 7 min, respectively). All-trans-retinal, generated by constant illumination, decayed approximately 3 times more rapidly than that generated by a flash and, as shown previously, the rate of rhodopsin regeneration following a flash was approximately 4 times slower than after constant illumination. The retinyl ester pool (> 95% all-trans-retinyl ester) did not show a statistically significant change in size or composition during illumination. In addition, constant illumination increased the amount of photoreceptor membrane-associated arrestin. The results suggest that the rate-limiting step of the visual cycle is the reduction of all-trans-retinal to all-trans-retinol by all-trans-retinol dehydrogenase. The accumulation of all-trans-retinal during illumination may be responsible, in part, for the reduction in sensitivity of the visual system that accompanies photobleaching and may contribute to the development of retinal pathology associated with light damage and aging.  相似文献   

16.
The function of the compound eye is dependent upon a developmental program that specifies different cell fates and directs the expression of spectrally distinct opsins in different photoreceptor cells. Rh5 is a novel Drosophila opsin gene that encodes a biologically active visual pigment that is expressed in a subset of R8 photoreceptor cells. Rh5 expression in the R8 cell of an individual ommatidium is strictly coordinated with the expression of Rh3, in the overlying R7 cell. In sevenless mutant files, which lack R7 photoreceptor cells, the expression of the Rh5 protein in R8 cells is disrupted, providing evidence for a specific developmental signal between the R7 and R8 cells that is responsible for the paired expression of opsin genes.  相似文献   

17.
Ribozymes, catalytic RNA molecules that cleave a complementary mRNA sequence, have potential as therapeutics for dominantly inherited disease. Twelve percent of American patients with the blinding disease autosomal dominant retinitis pigmentosa (ADRP) carry a substitution of histidine for proline at codon 23 (P23H) in their rhodopsin gene, resulting in photoreceptor cell death from the synthesis of the abnormal gene product. Ribozymes can discriminate and catalyze the in vitro destruction of P23H mutant mRNAs from a transgenic rat model of ADRP. Here, we demonstrate that in vivo expression of either a hammerhead or hairpin ribozyme in this rat model considerably slows the rate of photoreceptor degeneration for at least three months. Catalytically inactive control ribozymes had less effect on the retinal degeneration. Intracellular production of ribozymes in photoreceptors was achieved by transduction with a recombinant adeno-associated virus (rAAV) incorporating a rod opsin promoter. Ribozyme-directed cleavage of mutant mRNAs, therefore, may be an effective therapy for ADRP and also may be applicable to other inherited diseases.  相似文献   

18.
The neotenic tiger salamander retina is a major model system for the study of retinal physiology and circuitry, yet there are unresolved issues regarding the organization of the photoreceptors and the photoreceptor mosaic. The rod and cone subtypes in the salamander retina were identified using a combination of morphological and immunocytochemical markers for specific rod and cone opsin epitopes. Because the visual pigment mechanisms present in the tiger salamander retina are well characterized and the antibodies employed in these studies are specific for particular rod and cone opsin epitopes, we also were able to identify the spectral class of the various rod and cone subtypes. Two classes of rods corresponding to the "red" and "green" rods previously reported in amphibian retinas were identified. In serial semithin section analyses, rods and cones comprised 62.4+/-1.4% and 37.6+/-1.4% of all photoreceptors, respectively. One rod type comprising 98.0+/-0.7% of all rods showed the immunological and morphological characteristics of "red" rods, which are maximally sensitive to middle wavelengths. The second rod subtype comprised 2.0+/-0.7% of all rods and possessed the immunological and morphological characteristics of "green" rods, which are maximally sensitive to short wavelengths. By morphology four cone types were identified, showing three distinct immunological signatures. Most cones (84.8+/-1.5% of all cones), including most large single cones, the accessory and principal members of the double cone, and some small single cones, showed immunolabeling by antisera that recognize long wavelength-sensitive cone opsins. A subpopulation of small single cones (8.4+/-1.7% of all cones) showed immunolabeling for short wavelength-sensitive cone opsin. A separate subpopulation of single cones which included both large and small types (6.8+/-1.4% of all cones) was identified as the UV-Cone population and showed immunolabeling by antibodies that recognize rod opsin epitopes. Analysis of flatmounted retinas yielded similar results. All photoreceptor types appeared to be distributed in all retinal regions. There was no obvious crystalline organization of the various photoreceptor subtypes in the photoreceptor mosaic.  相似文献   

19.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthetic pathway of animals, fungi and some bacteria. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. In mouse erythroid 5-aminolevulinate synthase, lysine 313 has been identified as the residue involved in the Schiff base linkage with pyridoxal 5'-phosphate [Ferreira, G. C., et al. (1993) Protein Sci. 2, 1959-1965], while arginine 149, a conserved residue among all known 5-aminolevulinate synthase sequences, is essential for function [Gong & Ferreira (1995) Biochemistry 34, 1678-1685]. To determine whether each subunit contains an independent active site (i.e., intrasubunit arrangement) or whether the active site resides at the subunit interface (i.e., intersubunit arrangement), in vivo complementation studies were used to generate heterodimers from site-directed, catalytically inactive mouse 5-aminolevulinate synthase mutants. When R149A and K313A mutants were co-expressed in a hem A- Escherichia coli strain, which can only grow in the presence of 5-aminolevulinate or when it is transformed with an active 5-aminolevulinate synthase expression plasmid, the hem A- E. coli strain acquired heme prototrophy. The purified K313A/R149A heterodimer mixture exhibited K(m) values for the substrates similar to those of the wild-type enzyme and approximately 26% of the wild-type enzyme activity which is in agreement with the expected 25% value for the K313A/R149A coexpression system. In addition, DNA sequencing of four Saccharomyces cerevisiae 5-aminolevulinate synthase mutants, which lack ALAS activity but exhibit enzymatic complementation, revealed that mutant G101 with mutations N157Y and N162S can complement mutant G220 with mutation T452R, and mutant G205 with mutation C145R can complement mutant Ole3 with mutation G344C. Taken together, these results provide conclusive evidence that the 5-aminolevulinate synthase active site is located at the subunit interface and contains catalytically essential residues from the two subunits.  相似文献   

20.
Arginine-135, located at the border between the third transmembrane domain and the second cytoplasmic loop of rhodopsin, is one of the most highly conserved amino acids in the family of G protein-coupled receptors. The effect of mutation at Arg-135 on the ability of rhodopsin to undergo desensitization was investigated. Four mutants, R135K, R135Q, R135A, and R135L, were examined for their ability to be phosphorylated by rhodopsin kinase, to bind arrestin, and to activate the rod cell G protein, transducin (Gt). All of the mutants were phosphorylated, bound arrestin, and were able to activate Gt when reconstituted with 11-cis-retinal. Surprisingly, several of the mutants could be phosphorylated by rhodopsin kinase and could bind arrestin in the absence of 11-cis-retinal but were not able to activate Gt. These observations represent the first demonstration of a mutant G protein-coupled receptor that assumes a conformation able to interact with its G protein-coupled receptor kinase and arrestin, but not with its G protein, in the absence of ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号