首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to characterize the three‐dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t‐ZrO2) with addition of Ca+2 for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM‐images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non‐modified ceramic sample was characterized by the rather big (1–2 μm) grains of α‐Al2O3 phase with a habit close to hexagonal drowned in solid solution of t‐ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α‐Al2O3‐grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca+2 modifier but the most regular one is of the non‐modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. Microsc. Res. Tech. 78:840–846, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
This paper analyses the three‐dimensional (3‐D) surface morphology of optic surface of unworn contact lenses (CLs) using atomic force microscopy (AFM) and wavelet transform. Refractive powers of all lens samples were 2.50 diopters. Topographic images were acquired in contact mode in air‐conditioned medium (35% RH, 23°C). Topographic measurements were taken over a 5 µm × 5 µm area with 512 pixel resolution. Resonance frequency of the tip was 65 kHz. The 3‐D surface morphology of CL unworn samples revealed (3‐D) micro‐textured surfaces that can be analyzed using (AFM) and wavelet transform. AFM and wavelet transform are accurate and sensitive tools that may assist CL manufacturers in developing CLs with optimal surface characteristics. Microsc. Res. Tech. 78:1026–1031, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The present study aims at characterizing the three‐dimensional (3‐D) morphology of a Co–Cr–Mo dental alloy surface as a result of three different procedures used for polishing it. The sample surface morphology of the sampled surface was examined employing atomic force microscopy (AFM), statistical surface roughness parameters, and fractal analysis. An extra‐hard dental alloy of cobalt–chromium–molybdenum (Co–Cr–Mo) (Wironit®, from BEGO, Bremen, Germany) was prepared and moulded. Different polishing treatments were carried out on three groups of six samples each—a total of 18 samples. The first group contained six electropolished (EP) samples. The second group containing six samples went through a mechanical polishing process employing green rubber discs and a high shine polishing paste applied by a rotating black brush (BB). The third group comprising six samples as well went through a mechanical polishing process by means of green rubber discs, high shine polishing paste, and a rotating deer leather brush (DL). Fractal analysis on the basis of a computational algorithm applied to the AFM data was employed for the 3‐D quantitative characterization of the morphology of the sampled surfaces. The fractal dimension D (average ± standard deviation) of 3‐D surfaces for BB samples (2.19 ± 0.07) is lower than that of the DL samples (2.24 ± 0.08), which is still lower than that of the EP samples (2.27 ± 0.09). The results indicated the BB samples as presenting the lowest values of statistical surface roughness parameters, thus the best surface finish, while the EP samples yielded the highest values. Microsc. Res. Tech. 78:831–839, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
This work describes an analysis of titanium dioxide (TiO2) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2/Ar atmosphere in correlation with three‐dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as‐deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 μm × 0.95 μm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178‐2:2012 and American Society of Mechanical Engineers (ASME) B46.1‐2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.  相似文献   

5.
Efforts were made to achieve lower (R q < 0.1 μm) initial RMS roughnesses of PS304 coatings so that they may be considered for foil bearings operating under increasingly severe conditions that result in smaller air film thicknesses. Attainable roughness of conventional plasma-sprayed PS304 coatings has been typically R q > 0.25 μm, as limited by porosity in the deposited coating and surface irregularities correspondingly formed upon finishing. Initial attempts at achieving dense coatings by instead using a high-velocity oxyfuel (HVOF) flame-spraying process failed due to insufficient heating and softening of the NiCr and Cr 2 O 3 constituents of the PS304 feed powder, which rebounded from the steel target substrate and resulted in low deposition yield. Efficient HVOF deposition by a hydrogen-fueled system was achieved using NiCr and Cr 2 O 3 constituent particles of reduced size that were more effectively heated. The resultant dense coatings provided roughnesses as low as R q = 0.05 μm upon polishing. Tribological performance of these HVOF coatings was evaluated against Inconel X-750 in thrust-washer tests at a sliding speed of 5.4 m/s, with contact pressures of 20 and 40 kPa, and ambient or 500°C temperatures. The wear and friction performances in direct sliding contact, as would exist upon loss of separating air-bearing film, of the PS304 coatings produced by HVOF are found to be similar to those deposited by the plasma spray process.  相似文献   

6.
The aim of this study was to analyse the influence of the artificial saliva on a three‐dimensional (3‐D) surface texture of contemporary dental composites. The representatives of four composites types were tested: nanofilled (Filtek Ultimate Body, FUB), nanohybrid (Filtek Z550, FZ550), microfilled (Gradia Direct, GD) and microhybrid (Filtek Z250, FZ250). The specimens were polymerised and polished by the multistep protocol (SuperSnap, Shofu). Their surface was examined, before and after 3 weeks’ exposure to artificial saliva storage. The surface texture was analysed using the atomic force microscope (AFM). The obtained images were processed to calculate the areal autocorrelation function (AACF), anisotropy ratio Str (texture aspect ratio), and structure function (SF). The log–log plots of SF were used to calculate fractal properties, such as fractal dimension D, and pseudo‐topothesy K. The analysis showed changes in surface anisotropy ratio Str values, which became higher, whereas the Sq roughness (root‐mean‐square) reduced after the artificial saliva storage. All the samples exhibited bifractal structure before the saliva treatment, but only half of them remained bifractal afterwards (GD, FZ250), whereas the other half turned into a monofractal (FUB, FZ550). The cube‐count fractal dimension Dcc was found to be material‐ and treatment‐insensitive.  相似文献   

7.
Four types of Cr3C2–NiCr coatings containing different fractions of CeO2 additive were deposited using high velocity oxy-fuel spraying. Hardness tester, X-ray diffractometer, contact surface profiler, and scanning electron microscope equipped with energy dispersive spectrometer were employed to characterize the microhardness, phase composition, surface roughness, and microstructure of as-sprayed coatings. At the same time, the friction and wear behavior of the as-sprayed coatings sliding against Si3N4 ball at room temperature and elevated temperature of 400 or 800 °C under unlubricated condition was evaluated using an oscillating friction and wear tester. The worn surfaces of the composite coatings and Si3N4 counterpart balls were analyzed by means of scanning electron microscopy, X-ray diffraction, and three dimensional non-contact surface profiler. The friction and wear mechanisms of the coatings with and without CeO2 additive were comparatively discussed. Results show that the composite coatings doped with CeO2 had better wear-resistance than that without CeO2, and the coating containing 4 wt% CeO2 showed the best wear-resistant property. The improved wear-resistant properties of the composite coatings doped with CeO2 were attributed to the refined microstructure and improved mechanical properties induced by CeO2.  相似文献   

8.
Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4___0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 Bin. Residual stresses attributed to 7-A1203 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2~u method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667_+20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.  相似文献   

9.
The physical properties of electronic devices made by 2,6‐diphenyl anthracene (DPA) are influenced by the microtexture of DPA surfaces. This work focused on the experimental investigation of the 3‐D surface microtexture of DPA thin films deposited on OTS (octadecyltrichlorosilane), HMDS (Hexamethyldisilasane), OTMS (octadecyltrimethoxysilane), and Si/SiO2 (300 nm SiO2 thickness) substrates with 5 and 50 nm thicknesses and 5 and 10 μm scan size. The thin film surfaces were recorded using atomic force microscopy (AFM) and their images were stereometrically analyzed to obtain statistical parameters, in accordance with ASME B46.1‐2009 and ISO 25178‐2: 2012. The results showed the effect of different manufacturing parameters on microtexture values where the granular structure is confirmed in all films. In addition, root mean square is increased by increasing the thickness from 5 to 50 nm for all types of substrates.  相似文献   

10.
The formation of nanoscopic ripple patterns on top of material surfaces has been reported for different materials and processes, such as sliding against polymers, high-force scanning in atomic force microscopy (AFM), and surface treatment by ion beam sputtering. In this work, we show that such periodic ripples can also be obtained in prolonged reciprocating sliding against nanocrystalline diamond (NCD) films. NCD films with a thickness of 0.8 µm were grown on top of silicon wafer substrates by hot-filament chemical vapor deposition using a mixture of methane and hydrogen. The chemical structure, surface morphology, and surface wear were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and AFM. The tribological properties of the NCD films were evaluated by reciprocating sliding tests against Al2O3, Si3N4, and ZrO2 counter balls. Independent of the counter body material, clear ripple patterns with typical heights of about 30 nm induced during the sliding test are observed by means of AFM and SEM on the NCD wear scar surfaces. Although the underlying mechanisms of ripple formation are not yet fully understood, these surface corrugations could be attributed to the different wear phenomena, including a stress-induced micro-fracture and plastic deformation, a surface smoothening, and a surface rehybridization from diamond bonding to an sp 2 configuration. The similarity between ripples observed in the present study and ripples reported after repeated AFM tip scanning indicates that ripple formation is a rather universal phenomenon occurring in moving tribological contacts of different materials.  相似文献   

11.
The wire electric discharge machining (WEDM) process is a violent thermal process in which a certain volume of metal is eroded by thousands of electrical discharges in a fraction of 1 s. The process is widely used in tooling, especially in the cutlery and mold industry. However, the poor properties of surfaces such as high tensile residual stresses, high surface roughness, white layers, and microcracks are generated in the process. These properties vary with different levels of process parameters. In this paper, a new graphical evaluation of micron-scale surface topography on WEDM process is proposed by the fractal method. The objective is to quantify 3D micron-scale surface topography effect of process parameters such as pulse-on time, pulse-off time, cutting feed rate, wire tension, wire speed, and water pressure on working surface in dressing. Firstly, adaptive measuring was conducted on the basis of 3D micron-scale surface topography by the ?18(21×35) Taguchi standard orthogonal experiments; secondly, the fractal dimension was conducted to identify 3D micron-scale surface topography; and finally, the effect of WEDM process parameters was investigated with reference to the fractal dimension (FD) of 3D micron-scale surface. The results have shown that the pulse-on time is the most dominant factor in affecting the surface texture. Moreover, the interaction effect between process parameters is analyzed. It has also been observed that the optimized combination of pulse-on time of 3 μs, pulse-off time of 20 μs, cutting feed rate of 4 mm/min, wire tension of 6 kgf, wire speed of 6 m/min, and water pressure of 5 kgf is suitable for 3D micron-scale surface, and the FD of 3D micron-scale surface is increased by 11 %.  相似文献   

12.
In this study, a comparative topography analysis of titanium (Ti) surfaces was performed using two‐ (2D) and three‐dimensional (3D) profilometers. Ti samples were either only sandblasted (SB) using Al2O3 particles or were SB and received an additional chemical treatment using a solution of 4% HF (SLA). Samples with no treatment were used as a control group (C). Therefore, three different surfaces were evaluated: SB, SLA and C. The Ti surface topographies were evaluated by scanning electron microscopy. An Ra roughness measurement was performed on each Ti sample by 2D and 3D profilometers. Surface roughness was also characterized using amplitude, spatial and hybrid 3D parameters. 2D and 3D profilometer analyses produced very close results. Mean Ra values range from 0.19 to 0.25 (C, p<0.05), 0.84 to 0.99 (SLA, p<0.05) and 0.98 to 1 µm (SB, p>0.05). The statistically different Ra values depending on the surface studied may be explained by methodological and technical differences. Also, 3D profilometer seems to be the more appropriate analytical method for measuring the roughness of Ti surfaces because it also describes surface organization. SCANNING 31: 174–179, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
In this study, atomic force microscopy (AFM) imaging has been used to study the structural properties of polycrystalline CuInSe2 films, which are widely used as absorber materials in thin film solar cell devices. This technique demonstrated an excellent capability for the reproducible imaging of these rough polycrystalline materials. AFM imaging in combination with statistical analysis revealed distinct differences in the structural properties (i.e. grain width and height distributions, root‐mean‐square (RMS) and peak to valley (R(p–v)) roughness values) as a function of the specific growth technique used and the bulk composition of the films. In the case of Cu‐rich films, prepared by the H2Se/Ar treatment of Cu/In/Cu alloys, rough surface structures were in general observed. Statistical analysis revealed two distinct distribution of grains in these samples (1.0–2.5 μm and 3–5.5 μm) with large RMS and R(p–v) roughness values of 380 nm and 2.6 μm, respectively. In‐rich films were characterized by the presence of much smaller, roughly circular clusters with a significant reduction in both the width and height distributions as well as RMS and R(p–v) roughness values. The most successful growth techniques, in terms of producing homogeneous and dense films, were in the cases of H2Se/Ar treated metallic InSe/Cu/InSe alloys and the coevaporation of all materials to form CuInSe2. Both these techniques produced absorber films with very narrow grain width and height distributions as well as small roughness values. It was possible to establish that high efficiency devices are associated with the use of absorber films with narrow width distributions between 0.5 and 2 μm and small RMS (> 300 nm) roughness values. These values are used as a figure of merit in our laboratories to evaluate the structural properties of our CuInSe2 thin films.  相似文献   

14.
C. K. Lee 《摩擦学汇刊》2013,56(5):640-651
Nanocomposite coatings can endow a plated surface with various properties such as wear resistance, high-temperature corrosion protection, oxidation resistance, and self-lubrication. This work studies the corrosion and corrosive wear resistance of electroplated nickel nanocomposite coatings on Ti-6Al-4V alloy in a Hank's solution, adding various concentrations of an Al2O3 powder in plating solution, with particle diameters of 20–30 nm and 1 μm for comparisons. The experimental results showed that the content of Al2O3 incorporated into the electroplated nickel composite coating increased with the concentration of Al2O3 powder in the electroplating solution, and increasing the surface hardness, corrosion, and corrosive wear resistance of electroplated nickel micro- and nanocomposite coatings caused smearing of the nodule boundary and elimination of voids in the deposits. The Al2O3 nanoparticulates were embedded and distributed more uniformly than the Al2O3 microparticulates in the nickel matrix after a heat treatment of 400°C, producing a more continuous and dense coated composite layer on the Ti-6Al-4V substrate. This phenomenon is responsible for the Ni/Al2O3 composite coating with superior surface hardness, providing high corrosion resistance and corrosive wear protection to the Ti-6Al-4V alloy substrate in Hank's solution.  相似文献   

15.

Wear tests were performed with polytetrafluoroethylene (PTFE) + Al 2 O 3 nanocomposites on various manufactured surfaces to determine whether or not the wear resistance of these nanocomposites is a strong function of surface preparation. Four different surface finishes of grade 304 stainless steel counterfaces were used: electropolished (R q = 88 nm), lapped (R q = 161 nm), wet-sanded (R q = 390 nm), and dry-sanded (R q = 578 nm). PTFE + Al 2 O 3 nanocomposites made from powders of roughly 2-20 μm PTFE (matrix) and ~44 nm Al 2 O 3 (filler) were prepared at filler weight percentages of 0, 1, 5, and 10% and tested on each surface finish. Additionally, 5 wt% 44-nm nanocomposites were compared to identically prepared 5 wt% 80- and 500-nm Al 2 O 3 filled PTFE composites on each surface. Friction coefficients were between 0.12 and 0.19 and wear rates decreased from K = 810 × 10? 6 mm 3 /(Nm) for the 5 wt% 500-nm alumina-filled PTFE on the dry-sanded surface to K = 0.8 × 10? 6 mm 3 /(Nm) for the 5 wt% 80-nm filled composite on the lapped surface. It was found that the minimum wear rate occurred on the lapped counterface for every composite, and the wear rate is a strong function of the transfer film thickness and morphology.  相似文献   

16.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

17.
1D Al/Al2O3 nanostructures have been synthesized by chemical vapour deposition (CVD) of the molecular precursor [tBuOAlH2]2. The deposited nanostructures grow chaotically on the substrate forming a layer with a high porosity (80%). Depending on the deposition time, diverse nanostructured surfaces with different distribution densities were achieved. A three‐dimensional (3D) reconstruction has been evaluated for every nanostructure density using the Focus Ion Beam (FIB) tomography technique and reconstruction software tools. Several structural parameters such as porosity, Euler number, geometrical tortuosity and aspect ratio have been quantified through the analysis with specified software of the reconstructions. Additionally roughness of the prepared surfaces has been characterized at micro‐ and nanoscale using profilometry and AFM techniques, respectively. While high aspects ratio around 20–30 indicates a strong anisotropy in the structure, high porosity values (around 80%) is observed as a consequence of highly tangled geometry of such 1D nanostructures.  相似文献   

18.
The friction and wear properties of the prevailing different solid lubricant coatings (Ion-plated Au, Ion-plated Ag and RF-sputtered PTFE on SUS440C stainless steel) used in the bearings of high-speed cryogenic-turbo-pumps of liquid rocket engines were experimentally evaluated in liquid nitrogen immersed conditions. Also the above experiments were carried out with two newly proposed solid lubricant coatings of sputter-ion-plated MoSTi and a new ion-plated Pb on SUS440C stainless steel. The friction coefficient and wear rates of the coatings of ion-plated Au, ion-plated Ag, RF-sputtered PTFE, the new ion-plated Pb and MoS2Ti-SIP (with coating thickness of 0.7±0.1 μm) on SUS440C steel against SUS440C stainless steel ball in liquid nitrogen were compared. Worn surfaces were examined microscopically with a microscope and a profilometer for understanding the mechanisms of friction and wear and transfer film lubrication in liquid nitrogen. It is found that the newly proposed solid lubricant coatings are showing promising results for their use in liquid nitrogen immersed conditions. The sputter-ion-plated MoSTi coating on SUS 440C steel shows a minimum value of friction coefficient (μ=0.015) and wear rate (wc=0.56 × 10−6 mm3/N m ) in liquid nitrogen.  相似文献   

19.
Many types of engineering surfaces have been seen to have fractal characteristics. A good model of the properties can be produced using wavelet-based expansions. For multiscale analysis of surface topography, a difficulty exists in determining quantitatively the feature separation index for comprehensively characterising roughness, waviness, and form errors from a primary surface structure. In this project, we utilise the fractal dimension, which has proved to be an intrinsic parameter capable of measuring surface irregularities, to quantify the feature separation index in the wavelet transform for a composite characterisation of engineering surfaces. The effectiveness of the proposed method is validated in the computational testing of 2D and 3D surfaces. ID="A1"Correspondance and offprint requests to: Dr Y. Gao, Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. E-mail: meygao@ust.hk  相似文献   

20.
Binshi Xu  Zixin Zhu  Wei Zhang 《Wear》2004,257(11):1089-1095
A comparative study was carried out to investigate the microstructure and tribological behavior of Fe-Al and Fe-Al/WC iron aluminide based coatings against Si3N4 under dry sliding at room temperature using a pin-on-disc tribotester. The coatings were prepared by high velocity arc spraying (HVAS) and cored wires. The effect of normal load on friction coefficient and wear rate of the coatings was studied. The microstructure and the worn surfaces of the coatings were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscope (EDS). The results showed that, the main phases in both coatings were iron aluminide (Fe3Al and FeAl) and α. WC/W2C particles were embedded in the matrix of the composite coating. With adding WC hard particles, the Fe-Al/WC composite coating exhibited higher wear-resistance than Fe-Al coating. But the friction coefficient of both coatings showed little difference. As the load increased, the friction coefficient decreases slightly due to a rise of friction contact temperature and larger areas of oxide film formation on the worn surface, which act as a solid lubricant. Increasing load causes the maximum shear stress occurring at the deeper position below the surface, thereby aggravating the wear. The coating surface is subjected to alternately tensile stress and compression stress during sliding, and the predominant wear mechanism of the coatings appears to be delamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号