首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the shear bond strength (SBS) and internal marginal adaptation of pulp‐capping materials to dentin. Flat occlusal deep dentin surfaces were produced and randomly assigned to two groups (sound or artificial caries‐affected dentin). The specimens in each group were assigned to one of seven subgroups according to the materials used: Biodentine, Theracal LC, Ultra‐Blend plus, Calcimol LC, ApaCal ART, EQUIA Forte, and Ionoseal. Buildups (3‐mm inner diameter and 2‐mm deep) were made over the dentin surfaces. The bonded specimens were tested under shear forces at a crosshead speed of 0.8 mm/min and fracture modes were determined using a stereomicroscope at 25× magnification. The materials were applied to the pulp floor of prepared Class I cavities and then the cavities were restored with composite resin. Restored molar teeth were subjected to 5,000 thermocycles and sectioned in a bucco–lingual direction. Resin replicas were made to determine the adaptation at the pulp floor with scanning electron microscopy. Significant differences were determined among both bond strengths and gap formations of the materials. EQUIA Forte applied to both dentin substrates had a significantly higher SBS than the other materials. The bond strength of each material was not influenced by the dentin condition. Biodentine (3.03%), EQUIA Forte (7.83%), and Theracal LC (13.37%) had lower gap formations compared to other materials but were not significantly different from each other.  相似文献   

2.
Microorganisms are able to survive and induce persistent infection in extraradicular areas. The objective of this study was to evaluate the relationship between extraradicular biofilm and persistent periapical periodontitis. Thirty‐five apical samples with different stages of pulp and periapical pathology (vital pulp, pulp necrosis without radiographically visible periapical lesions, chronic periapical periodontitis that had not received root canal therapy and persistent periapical periodontitis) were initially evaluated using scanning electron microscopy. The same samples were then processed using Brown and Brenn‐modified Gram staining. We detected extraradicular biofilm in all samples with persistent periapical periodontitis and in three samples with chronic periapical periodontitis. The extraradicular bacteria predominantly had rod and filament morphology and were surrounded by varying amounts of amorphous extracellular material. The surfaces outside the root of the apical samples with vital pulp and pulp necrosis were covered by fibers, and no extraradicular microorganisms were present, which suggests that extraradicular biofilm is closely associated with failed endodontic treatments, thus resulting in persistent infection. Microsc. Res. Tech. 76:979–983, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
This study evaluated the effects of chemical agents on the physical properties and structure of primary pulp chamber dentin using surface roughness, microhardness tests, and scanning electron microscopy (SEM). Twenty‐five primary teeth were sectioned exposing the pulp chamber and were divided into five groups (n = 5): NT, no treatment; SH1, 1% sodium hypochlorite (NaOCl); SH1U, 1% NaOCl + Endo‐PTC®; SH1E, 1% NaOCl + 17% EDTA; and E, 17% EDTA. After dentin treatment, the specimens were submitted to roughness, microhardness testing, and SEM analysis. Roughness and microhardness data were submitted to one‐way ANOVA and Tukey's test (P < 0.05). The SH1E group showed the highest roughness, followed by the E group (P < 0.05) when compared with the NT, SH1, and SH1U groups. Microhardness values of SH1 and SH1U showed no significant difference as compared to the NT (control) group (P > 0.05). Microhardness values could not be obtained in the EDTA groups (SH1E and E). The presence of intertubular dentin with opened dentin tubules was observed in the NT, SH1, and SH1U groups. SH1E showed eroded and disorganized dentin with few opened tubules and the intertubular/peritubular dentin was partially removed. Considering the physical and structural approaches and the chemical agents studied, it can be concluded that NaOCl and NaOCl associated with Endo‐PTC® were the agents that promoted the smallest changes in surface roughness, microhardness, and structure of the pulp chamber dentin of primary teeth. Microsc. Res. Tech. 77:52–56, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
OBJECTIVES: To compare microleakage of three self‐etch adhesives and to analyze enamel surface morphology and interfacial morphology of resin–enamel and resin–dentin interface under scanning electron microscope (SEM). EXPERIMENTAL DESIGN: Study was conducted in 65 extracted human premolars. Class V cavities were prepared in 45 teeth and assigned to three groups (n = 15) according to three self‐etch adhesives (OptiBond All‐in‐One, iBond, and Adper Prompt L‐Pop). After restoration, 10 samples from each group were used to assess microleakage at enamel and dentin margin. Five samples from each group were used for analysis of interfacial morphology at resin–enamel and resin–dentin interface under SEM. Remaining 20 teeth were used to prepare flat enamel buccal surfaces to analyze the difference in surface morphology after treatment with three adhesives (n = 5 each) and 36% phosphoric acid treatment (n = 5). PRINCIPAL OBSERVATIONS: At enamel margin, Prompt L‐Pop depicted least leakage of all the three adhesives and also showed best interfacial adaptation under SEM. At dentin margin, OptiBond All‐in‐One showed significant less leakage than iBond and Prompt L‐Pop. On flat enamel surface, phosphoric acid produced the most retentive etching pattern when compared with the three adhesives. CONCLUSION: Prompt L‐Pop showed the best bonding effectiveness in enamel, whereas OptiBond All‐in‐One performed significantly better in dentin. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Aim: To evaluate and compare the effect of double‐application of single‐step self‐etch adhesives using microleakage study and to analyze the dentin–adhesive interfacial micromorphology. Methods: In total, 72 extracted human premolars were divided into three groups for different self‐etch adhesives (G Bond, GC [GB], Optibond, Kerr [OB], and Xeno V Plus, Dentsply [XV]). Class V cavities were prepared. Each group was further divided into two subgroups (n = 10) according to the placement technique of the adhesive, using the single‐application [subgroup (a)] or double‐application method [subgroup (b)]. Resin composite (Z 250, 3M ESPE, St. Paul, MN) was used to restore the cavities and light cured for 40 s. Twenty samples from each group were subjected to microleakage study. Two samples from both the subgroups of the three adhesives were used for scanning electron microscopic examination of the resin–dentin interfacial ultrastructure. Dye leakage scores were subjected to statistical analysis using Kruskal–Wallis and Mann–Whitney U‐tests at significance level of P < 0.05. Results: GB depicted significantly more microleakage which was significantly greater than OB and XV. The double application led to significant decrease in microleakage of GB with no significant effect on the microleakage scores of other two all‐in‐one adhesives, that is OB and XV. Conclusion: Double application of all‐in‐one self‐etch adhesives improves the marginal sealing ability in dentin although it appears to be product dependent. Microsc. Res. Tech. 78:489–494, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The objective of this study was to analyze the dentin‐resin cements interfacial ultramorphologies using two different methods: scanning (SEM) and transmission electron microscopy (TEM). Four commercial products were evaluated: two conventional cementing system (RelyX ARC/Adper? Scotchbond? Multi‐Purpose Plus, 3M ESPE and Clearfil Esthetic Cement/DC Bond, Kuraray) and two self‐adhesive resin cements (RelyX Unicem, 3M ESPE and Clearfil SA Cement, Kuraray). Prepolymerized resin disks (Sinfony, 3M ESPE) were cemented on oclusal dentin surfaces of 24 third human molars, simulating the indirect restorations. After 24 h, teeth were sectioned into 0.9‐mm thick slabs and processed for microscopy analyses (SEM or TEM/ n = 3). Qualitative characterization of dentin‐resin cement interface was performed. Hybrid layer formation with long and dense resin tags was observed only for RelyX ARC cementing system. Clearfil Esthetic Cement/DC Bond system revealed few and short resin tags formation, whereas no hybridization and resin tags were detected for self‐adhesive resin cements. Some interfacial regions exhibited that the self‐adhesive resin cements were not bonded to dentin, presenting bubbles or voids at the interfaces. In conclusion, TEM and SEM bonding interface analyses showed ultramorphological variations among resin cements, which are directly related to dental bonding strategies used for each resin cement tested. Microsc. Res. Tech. 76:1234–1239, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
This study evaluates the bond strength of four self‐etching adhesive systems with different acidity levels in normal and artificially hypermineralized dentin substrate. Healthy human molars were divided into groups: normal dentin—N (n = 36) and artificially hypermineralized dentin—H (n = 36). Self‐etching adhesive systems Clearfil S3 Bond (n = 9), Optibond All in One (n = 9), Clearfil SE Bond (n = 9), and Adhese (n = 9) were used for both the N and H groups. Transparent cylindrical matrices were positioned on the treated dentin surfaces, filled with composite resin, and light‐cured for 40 s. After the transparent cylindrical matrices were removed, the specimens were stored for 24 hr in a humid environment at 37°C and were subjected to a micro‐shear bond strength test. For each group, a specimen was prepared and evaluated in scanning electron microscope for adhesive interface observation. Normality was confirmed and the two‐way analysis of variance and Games–Howell post‐tests were conducted (α = .05). The data demonstrated an interaction between the adhesive system and type of dentin substrate (p < .01). For normal dentin, all adhesive systems assessed were adequate; however, in the hypermineralized dentin, the Clearfil SE Bond two‐step self‐etching adhesive system with mild pH presented the highest immediate bond strength. There was a predominance of adhesive failures for all adhesive systems in the different dentin substrates evaluated. It was concluded that the self‐etching adhesive systems evaluated were efficient for both substrates, and for the hypermineralized dentin, the Clearfil SE Bond presented a higher bond strength value.  相似文献   

8.
Purpose: This study investigated the influence of collagen removal with calcium hypochlorite on the surface morphology of acid‐etched dentin and on the microleakage of composite restorations. In addition, the elemental composition (EC) of dentin after removal of the collagen fibrils was analyzed. Materials and Methods: Forty third molars received two cavities and were divided into four groups according to dentin treatment: CTRL—no pre‐treatment; Na10—10% NaOCl for 30 s; Ca10—10% CaOCl for 30 s, and Ca15—15% CaOCl for 30 s. The cavities were filled using an acetone‐based adhesive system and a resin composite; they were then subjected to thermal cycling for 5,000 cycles, immersed in methylene blue for 4 h and sectioned into 1‐mm thick slabs. Two examiners evaluated two slices per tooth using a stereomicroscope and assigned the degree of infiltration (scores 0–3). The data were analyzed using the Kruskal–Wallis (α = 0.05). Four teeth received surface treatment according to the groups and were submitted to SEM and EDS to carry at the EC. Results: There was no significant difference between the experimental groups (P = 0.533). CaOCl alters the morphology and surface composition of the dentin, resulting in an increase in the amount of calcium in the interface. Conclusions: When used prior to an acetone‐based adhesive system, CaOCl did not produce any differences in microleakage when compared to the CTRL group or to the Na10 group. Microsc. Res. Tech. 78:676–681, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The application of resin‐based materials is an alternative of treatment for eroded lesions. Nevertheless, there are no studies about the penetration of these materials into eroded lesion, which might affect its adhesion. Therefore, this study evaluated the penetration of four resin‐based materials, with and without enamel etching. By using an in vitro protocol, types of treatment were studied at five levels (AdheSE®, Tetric N‐Bond®, Single Bond 2®, Helioseal Clear®, Icon®) and types of enamel etching in two levels (with and without). Materials were stained with 0.02 mg/mL ethanolic solution of tetramethylrhodamine isothiocyanate. Bovine enamel samples (4 × 4 mm) were immersed in 0.01 M HCl, pH 2.3, for 30 seconds to produce initial eroded lesions. Afterward, the materials were applied on half of sample enamel surface following the manufacturer's instructions. On the other half of sample, the materials were applied without etching the enamel. Materials penetration into the enamel was assessed by Confocal Laser Scanning Microscopy on reflection and fluorescence modes. The penetration depth (PD) was measured using ImageJ software. Data were analyzed by two‐way ANOVA and Tukey test (P < 0.05). Regardless of the material, etched enamel resulted in higher PD than non‐etched (P < 0.05). Icon® showed the highest PD in enamel followed by Helioseal Clear® (P < 0.05), with significant difference between them (P < 0.05) and no difference was found among AdheSE®, Tetric N‐Bond®, and Single Bond 2® (P > 0.05). It can be concluded that prior enamel etching increased the materials penetration into eroded enamel and the Icon®—infiltrant presented highest penetration. Microsc. Res. Tech. 79:72–80, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
This study aimed to evaluate the microleakage of a universal adhesive's different application modes incorporated with Er,Cr:YSGG laser on Class V resin composite restorations. Sound human molar teeth (n = 30) were used for microleakage evaluations. Specimens with 60 standardized Class V cavities were divided into five groups according to the adhesive modes of universal adhesive, Adhese Universal (n = 12). Group 1‐etch‐and‐rinse mode with phosphoric acid; Group 2‐etch‐and‐rinse mode with Er,Cr:YSGG laser; Group 3‐selective‐etch mode with phosphoric acid; Group 4‐selective‐etch mode with Er,Cr:YSGG laser; Group 5‐self‐etch. After restorations were performed with a resin composite, Tetric N‐Ceram, the specimens were polished and subjected to thermocycling (10,000X). Following immersion in 0.5% basic fuschin for a day, the teeth were sectioned and the degree of microleakage was determined along the tooth‐resin composite interface using a light microscopy(40X). Five specimens from each group were examined by scanning electron microscopy. The Kruskal–Wallis, Siegel Castello, and Wilcoxon tests were used for statistical analyses (α = .05). At the enamel margins, significant differences were obtained among the groups (p < .05). Significantly higher microleakage scores were detected in Group 5 in comparison with Groups 1, 2, and 3. There were no significant differences between different adhesive strategies at the dentin margins (p > .05). While analyzing enamel and dentin microleakage scores, no statistically significant differences were observed in Groups 4 and 5 (p > .05). The laser application time and the adhesive modes of universal adhesives could affect the microleakage at the enamel margins. Different adhesive modes of universal adhesives combined with laser etching had no influence on the microleakage scores of dentin margins.  相似文献   

11.
The purpose of this study was to investigate the reaction of the pulp of dogs’ teeth after insertion of soft carious dentin from freshly extracted human teeth into the buccal cavities for short and longer periods of time. Forty‐seven mature lower and upper teeth were used in this study. On the middle of the buccal side of the teeth, 3 × 5 mm class ν cavities were prepared, soft carious dentin from freshly extracted human teeth was inserted into the floor of the cavity, and those were filled with glass ionomer. The dogs were killed after 7, 14, 28 and 47 days using vital perfusion techniques. Six‐micrometre sections were prepared and blindly evaluated by pathologist. An inflammatory reaction occurred in all of the samples. Moderate to severe inflammation were shown in all periods except in one in the 7‐day period. Insertion of soft carious dentin gathered from freshly extracted human teeth into class ν cavities produced in dogs’ teeth for 7 days is a reproducible process and could be used in study of pulp pathology.  相似文献   

12.
This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty‐two non‐carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self‐adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm2 sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well‐established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self‐adhesive cements may adversely affect resin‐dentin bond. Microsc. Res. Tech. 76:788–794, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Background: It remains unclear as to whether or not dental bleaching affects the bond strength of dentin/resin restoration. Purpose: To evaluated the bond strength of adhesive systems to dentin submitted to bleaching with 38% hydrogen peroxide (HP) activated by LED‐laser and to assess the adhesive/dentin interfaces by means of SEM. Study design: Sixty fragments of dentin (25 mm2) were included and divided into two groups: bleached and unbleached. HP was applied for 20 s and photoactivated for 45 s. Groups were subdivided according to the adhesive systems (n = 10): (1) two‐steps conventional system (Adper Single Bond), (2) two‐steps self‐etching system (Clearfil standard error (SE) Bond), and (3) one‐step self‐etching system (Prompt L‐Pop). The specimens received the Z250 resin and, after 24 h, were submitted to the bond strength test. Additional 30 dentin fragments (n = 5) received the same surface treatments and were prepared for SEM. Data were analyzed by ANOVA and Tukey's test (α = 0.05). Results: There was significant strength reduction in bleached group when compared to unbleached group (P < 0.05). Higher bond strength was observed for Prompt. Single Bond and Clearfil presented the smallest values when used in bleached dentin. SEM analysis of the unbleached specimens revealed long tags and uniform hybrid layer for all adhesives. In bleached dentin, Single Bond provided open tubules and with few tags, Clearfil determined the absence of tags and hybrid layer, and Prompt promoted a regular hybrid layer with some tags. Conclusions: Prompt promoted higher shear bond strength, regardless of the bleaching treatment and allowed the formation of a regular and fine hybrid layer with less deep tags, when compared to Single Bond and Clearfil. Microsc. Res. Tech., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The aim of this study was to determine the erosive potential of hydrogen peroxide (HP) containing mouthwash on dentin assessed by Focus variation three‐dimensional (3D) microscopy. Twenty dentin slabs were selected and randomly allocated into two groups (n = 10): DW—Distilled water (pH = 7.27) and HP—1.5% (pH = 3.78). Each specimen was cyclically demineralized (4 × 60 s/day, 10 days) with HP or DW and brushed 3×/day (200 g, 150 strokes—toothpaste with 1,450 ppmF as NaF). Between the challenges, the specimens were exposed to artificial saliva. Afterward, dentin loss was analyzed using focus variation 3D microscopy, and the data were submitted to unpaired t‐test (α = 0.05). Statistically significant difference was found between the mean wear rate (μm, ±SD) of HP (1.98 ± 0.51) and DW (1.45 ± 0.39). The results suggest that the use of HP‐containing mouthwash associated to brushing may increase the risk of tissue loss and focus variation 3D microscopy may be used as a technique for quantifying dental wear. Microsc. Res. Tech. 76:904–908, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek UltimateASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy OneAEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self‐etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin‐22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.  相似文献   

16.
Sixty samples of human dentin were divided into six groups (n = 10) and were irradiated with Er:YAG laser at 100 mJ–19.9 J/cm2, 150 mJ–29.8 J/cm2, 100 mJ–35.3 J/cm2, 150 mJ–53.0 J/cm2, 200 mJ–70.7 J/cm2, and 250 mJ–88.5 J/cm2, respectively, at 7 Hz under a water spray. The atomic percentages of carbon, oxygen, magnesium, calcium, and phosphorus and the Ca‐to‐P molar ratio on the dentin were determined by energy dispersive X‐ray spectroscopy. The morphological changes were observed using scanning electron microscopy. A paired t‐test was used in statistical analysis before and after irradiation, and a one‐way ANOVA was performed (P ≤ 0.05). The atomic percent of C tended to decrease in all of the groups after irradiation with statistically significant differences, O and Mg increased with significant differences in all of the groups, and the Ca‐to‐P molar ratio increased in groups IV, V, and VI, with statistically significant differences between groups II and VI. All the irradiated samples showed morphological changes. Major changes in the chemical composition of dentin were observed in trace elements. A significant increase in the Ca‐to‐P ratio was observed in the higher energy density groups. Morphological changes included loss of smear layer with exposed dentinal tubules. The changes produced by the different energy densities employed could have clinical implications, additional studies are required to clarify them. Microsc. Res. Tech. 78:1019–1025, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The purpose of this study was to compare total‐etch, self‐etch, and selective etching techniques on the marginal microleakage of Class V composite restorations prepared by Er:YAG laser and bur. Class V cavities prepared on both buccal and lingual surfaces of 30 premolars by Er:YAG laser or bur and divided into six groups. The occlusal margins were in enamel, and the cervical margins were in cementum. Group‐1: bur preparation(bp)+Adper Single Bond 2 (ASB)+Filtek Z550 (FZ); Group‐2: laser preparation(lp)+(ASB)+(FZ); Group‐3: bp + Clearfil S3 Bond Plus (CSBP)+(FZ); Group‐4: lp+(CSBP) (FZ); Group‐5: bp + acid etching+(CSBP)+(FZ); Group‐6: lp + acid etching+(CSBP)+(FZ). All teeth were stored in distilled water at 37°C for 24 hr, and then thermocycled 1000 times (5–55°C). Five teeth from each group were chosen for the microleakage investigation, and two teeth for the scanning electron microscope evaluation. Teeth which were prepared for the microleakage test were immersed in .5% methylene blue dye for 24 hr. After immersion, the teeth were sectioned and observed under a stereomicroscope for dye penetration. Data were analyzed using Kruskal–Wallis and Mann–Whitney U tests (p < .05). More microleakage was observed in the cervical regions compared to the occlusal regions in Groups 3, 5, and 6, respectively (p < .05). There is no statistically significant difference in Groups 1, 2, and 4, in terms of cervical regions versus occlusal regions (p > .05). No significant differences were observed among any groups in terms of occlusal and cervical surfaces, separately (p > .05). Different etching techniques did not influence microleakage of Class V restorations prepared by Er:YAG laser and bur.  相似文献   

18.
In orthodontic treatment, the frictional force between the archwire and bracket reduces the effectiveness of orthodontic treatment. The frictional force is affected not only by the geometry of the self‐ligating brackets but also by physical changes between the bracket slots and archwire surfaces during sliding movement. This study examined quantitatively the effect of self‐ligating treatments on the surfaces of stainless steel (SS) archwires during tooth movement in vivo by atomic force microscopy. Orthodontic 0.019″ × 0.025″ SS archwires after clinical use with the first bicuspid‐extraction treatment were employed using the Damon 3MX® SS self‐ligating brackets, Clippy‐C® ceramic self‐ligating brackets, and Kosaka® SS brackets. Intact SS archwires were used as the control group. All SS archwires after clinical use showed severe scratches and significantly higher roughness caused by frictional interactions between the brackets and archwires (p < 0.0001 vs. control). The descending order of surface roughness was the SS archwires treated, with ceramic self‐ligating brackets, with conventional SS brackets, and with SS self‐ligating brackets (p < 0.001). These findings suggest that an orthodontic treatment with SS self‐ligating brackets may require smaller orthodontic forces than that with ceramic self‐ligating brackets or conventional SS brackets.  相似文献   

19.
This study evaluated the effects of an antioxidant application on the compromised bond strength of an adhesive to dentin bleached with 35% hydrogen peroxide. The dentin surfaces of the pulp chambers of 70 human third molars were ground, and the specimens were assigned randomly into seven groups, as follows: (a) control (unbleached); (b) bleached for 45 min, bonded immediately; (c) bleached for 45 min, treated with sodium ascorbate (SA) for 2 min, and bonded; (d) bleached for 45 min, bonded after 2 weeks; (e) bleached for 12 days, bonded immediately; (f) bleached for 12 days, treated with SA for 10 min, and bonded; and (g) bleached for 12 days, bonded after 2 weeks. In each group, the multimode adhesive was applied in etch‐and‐rinse and self‐etch modes. The dentin surfaces were covered with a resin‐based composite, and the bonded specimens were sectioned to produce composite–dentin sticks. The sticks were attached to a testing machine and subjected to a tensile force, and the representative specimens were examined via scanning electron microscopy. The bond strength was not affected by the application period of the bleaching agent. Both bleaching treatments significantly reduced the bond strength to the dentin in the self‐etch or etch‐and‐rinse mode when compared with the control group. The bond strengths returned to normal levels with the SA applications or by waiting 2 weeks, regardless of the application period of the bleaching gel. The adhesive revealed a higher bond strength in the etch‐and‐rinse mode than in the self‐etch mode.  相似文献   

20.
Microscopy has been widely used to complement the data of studies related to dentin bonding; however, different specimen preparation methods may influence the analysis. Aiming to contribute to the reported scenario, this study evaluated the effect of two specimen‐sectioning methods (cleavage and diamond disk cut) on the quality of the scanning electron microscopy (SEM) images. Four crowns of human molars were selected and had an area of approximately 6 mm2 of dentin exposed. They were then divided into two groups according to the universal adhesive application: total and self‐etching modes. Then, composite blocks were built up and the specimens were stored in deionized water to allow the postcuring. The specimens were further divided according to the sectioning method: cleavage or diamond disk cut. Four specimens were obtained from each tooth. They were desiccated, placed on aluminum stubs, sputter‐coated with gold, and observed in a scanning electron microscope, with ×2000 of magnification. The quality of the SEM images were evaluated by two calibrated examiners and classified into four scores (1–4). Mann–Whitney test (p < .05) showed that the diamond disk provided significantly higher scores than cleavage, whereas no significant difference was observed when comparing the total‐etching and self‐etching modes of application. The diamond disk cut method is preferable to the cleavage method to ensure the quality of the SEM analysis in studies involving the resin–dentin interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号