首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urea is acknowledged as the predominant precursor of ethyl carbamate (EC) in Chinese rice wine. During Chinese rice wine fermentation, urea accumulates owing to the nitrogen catabolite repression effect when preferred nitrogen sources are available. In previous research, two metabolically engineered strains were constructed with overexpression of DUR1,2 and deletion of CAR1 from an industrial Chinese rice wine yeast N85. The decreasing effect of urea and EC was demonstrated during small‐scale Chinese rice wine fermentations. The present study compared the urea utilization rate of the parental and metabolically engineered yeast strains, using a preferred and non‐preferred nitrogen source culture media, leading to alleviated urea accumulation and thus EC formation. The qRT‐PCR results showed that, in all of the culture media, DUR1,2 was overexpressed with the inserted strong promoter PGK1p. During pilot scale fermentations, the urea and EC content decreased with the engineered strains. These results confirmed that the engineered strains could resist the nitrogen catabolite repression effect. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

2.
朱旭亚  陆健  谢广发 《食品工业科技》2012,33(17):173-175,183
氨基甲酸乙酯是一种人类的潜在致癌物,在许多发酵酒中均有存在,主要来源于发酵过程中酵母代谢产生的尿素。以pYX212为载体,将脲基酰胺酶基因DUR1,2克隆到TPI强启动子和终止子之间的位点,再通过同源重组的方式将受强启动子调控的目的基因整合到黄酒酵母的基因组中,最终获得一株低产尿素的胞内脲基酰胺酶基因组成型高表达的黄酒酵母85#DUR1,2。在实验室规模的黄酒酿造实验中,85#DUR1,2产尿素量为8.34mg/L,比出发菌株降低了69.9%,贮存一段时间后的酒液中氨基甲酸乙酯含量比出发菌株降低了40.5%,而发酵性能、酒精度、总酸及氨基态氮与出发菌株无显著差异。  相似文献   

3.
Urea, as the main precursor of ethyl carbamate (EC), has received extensive attention. Here, we have metabolically engineered an industrial yeast strain – Saccharomyces cerevisiae N85 – to investigate the contribution of the EC precursor citrulline to the concentration of EC in Chinese rice wine. The results showed that the citrulline biosynthetic pathway of the modified strain N85‐arg3 was completely suppressed by deletion of ARG3, encoding ornithine carbamoyltransferase. However, there were no significant differences in the levels of citrulline or EC between N85‐arg3 and the parental strain N85 during fermentation. In addition, we over‐expressed ARG1 (encoding argininosuccinate synthase) and ARG4 (encoding argininosuccinate lyase) to construct the engineered strains N85ARG1,4 and N85ARG1,4‐arg3. The citrulline contents in Chinese rice wine fermented with N85ARG1,4 and N85ARG1,4‐arg3 were respectively 24.1 and 20.4% less than that of N85. However, the contents of EC were 23.8 and 28.5% more than that of N85. These results suggested that reducing the formation of EC during Chinese rice wine fermentation by genetically engineering citrulline metabolism in S. cerevisiae was not a viable proposition. Copyright © 2018 The Institute of Brewing & Distilling  相似文献   

4.
为考察酵母工程菌在黄酒酿造过程中的发酵性能及其降低发酵液中尿素和氨基甲酸乙酯(ethyl carba-mate,EC)的能力,以前期构建的降低黄酒中尿素和EC效果最好的酵母工程菌N85DUR1,2-c为研究对象,利用单因素试验考察黄酒发酵工艺对其降低发酵液中尿素和EC能力的影响,并对其在生产试验过程中的发酵性能进行研究。结果表明,酵母接种量、发酵温度以及麦曲添加量等工艺参数对工程菌N85DUR1,2-c低产尿素和EC的性能没有明显的影响,且含量低于亲本菌株。50 kL生产试验表明,工程菌N85DUR1,2-c所酿黄酒中理化指标含量正常,符合黄酒国标的要求。而N85DUR1,2-c发酵液中尿素和EC的含量分别为(2.4±0.2)mg/L和(14.9±0.6)μg/L,较亲本菌株分别降低了90.7%和54.6%,且贮存过程中EC含量增加缓慢。说明酵母工程菌N85DUR1,2-c在不改变黄酒优良品质的前提下,能够显著地降低发酵液中尿素的含量,可以从根源上减少黄酒中EC的积累,提高饮用...  相似文献   

5.
氨基甲酸乙酯(EC)是一种潜在致癌物,在黄酒发酵过程中尿素是它的前体物质。该研究通过紫外诱变和基因过表达筛选获得改良黄酒酵母菌种,并对黄酒产品的理化指标进行检测可知,与出发菌株相比,改造菌株的发酵性能和黄酒的出酒率、酒精度、总糖、总酸、氨基酸态氮和β-苯乙醇没有明显的差异,而诱变菌株JF501-A62发酵产物尿素含量降低了67%,EC含量降低了59%;基因过表达菌株JF501-B5发酵产物尿素含量降低了88%,EC含量降低了63%。两者均有很好的发酵性能,并取得了较好地降低产品中尿素含量、进而降低氨基甲酸乙酯含量的效果。与紫外诱变相比,基因过表达的改良方法获得了尿素含量更低的菌株,并贮存6个月之后产品中的EC含量更低。  相似文献   

6.
The complex metabolic processes of yeast influence wine fermentation and therefore the quality of wine. Wine yeasts, owing to their being typically prototrophic and often polyploid, have been restricted in terms of exploiting classical recombinant genetic techniques to improve their characteristics. To overcome this problem, haploids have been isolated from a commercial Chinese rice wine strain N85, by disruption of the HO gene. In this study, the Cre–loxP system and a removable G418r marker were used to construct an HO disruption cassette. Most of the heterologous sequences of constructed disruption cassette were successfully excised from the genome of the haploids by loop‐out of the KanMX gene, through induced expression of the Cre recombinase. The removal of the resistant marker ensures the biological safety of the strains. As expected, no difference in fermentation capacity between the parental and the haploid strains was seen. The present work reports the construction of an HO disruption cassette by touchdown polymerase chain reaction and its application with a Chinese rice wine yeast for haploid isolation and to broaden physiological investigations and industrial applications. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

7.
Ethyl carbamate (EC) is a carcinogenic compound derived from the spontaneous reaction of ethanol with urea or citrulline in Chinese rice wine. Polymerase chain reaction–denaturing gradient gel electrophoresis showed that five species, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis and Lactobacillus coryniformis were the most abundant bacteria in the Chinese rice wine production process. Five strains belonging to these species can degrade arginine primarily in the exponential growth phase and accumulate citrulline in MRS‐Arg medium. In addition, an L. brevis strain was shown to be capable of assimilating citrulline, indicating the potential of this strain suggesting a potential route to reduce citrulline content and ethyl carbamate formation in Chinese rice wine fermentation. Copyright © 2018 The Institute of Brewing & Distilling  相似文献   

8.
In order to assess the influence of yeast strains on volatile flavour profiles of Chinese rice wine, small‐scale Chinese rice wine brewing was carried out with eight yeast strains from three different typical Chinese rice wine brewing regions. The volatile flavour compounds were extracted by headspace solid phase microextraction (HS‐SPME) and analyzed by gas chromatography‐mass spectrometry (GC‐MS). The volatile flavour profiles of the different Chinese rice wines showed statistically significant differences depending on the yeast strains used. Yeast strains from the Shaoxing region showed a higher capacity to produce the esters 2‐phenylethanol and 3‐methylthiopropanol, while yeast strains from the Shanghai region stood out for their production of branched‐chain higher alcohols. Chinese rice wine fermented with a yeast strain from the Jiangsu region had the highest levels of organic acids. Using principal component analysis of the Chinese rice wine volatile flavour compounds, the eight yeast strains could be classified into three groups according to their origins. This is the first report about the volatile flavour characteristics of Chinese rice wine yeast. The data obtained in this work shows that the yeast strains contributed significantly to the flavour differences of the Chinese rice wines from the different regions.  相似文献   

9.
This study evaluated the chemical and volatile composition of lychee wines fermented with four commercial yeast strains of Saccharomyces cerevisiae: EC‐1118, R2, 71B and MERIT.ferm. Yeast cell population, pH, malic acid, ammonia and some amino acids had significant differences between strain 71B and other strains. There were strain variations with regard to degradation and retention of some juice volatiles as well as formation of new volatile compounds such as most esters and certain terpene compounds. Ethyl octanoate had the highest odour activity value (OAV of 500–1100), followed by ethyl hexanoate (about 50–85), among the common odorants in all lychee wines. Ethyl octanoate reached its highest OAV (1077) in the lychee wine fermented with strain EC1118, whereas ethyl hexanoate had the highest OAV (85) in the wine fermented with strain MERIT.ferm. Cis‐rose oxide, the character‐impact volatile in lychee juice with highest OAV (161), was dramatically reduced to trace levels after fermentation.  相似文献   

10.
用一种高效快速的免克隆方法-长侧翼同源PCR(LFH-PCR),构建基因敲除组件,然后通过化学转化方法把敲除组件转入黄酒酵母细胞中,利用同源重组机制精确敲除精氨酸酶基因(CAR1),构建了黄酒酵母工程菌株。结果表明,敲除CAR1基因的工程菌与出发菌株相比,酒液中尿素的含量降低了72%,氨基甲酸乙酯含量降低了38%,并且该菌株的遗传稳定性好,发酵性能与出发菌株基本一致。   相似文献   

11.
为对黄酒酵母菌株的遗传学进行研究,对黄酒酵母利用基因敲除技术敲除HO基因,通过Mcclary产孢培养基于25?℃条件下培养5~7?d,得到a和α两种不同配型且配型不会发生转变的黄酒酵母单倍体菌株,通过群体杂交,成功获得了全敲除HO基因的二倍体酿酒酵母菌株黄酒酵母11-1-HOΔ,用于黄酒发酵实验。结果表明:通过基因工程手段敲除HO基因对黄酒发酵无显著影响,可用于工业生产中,且黄酒酵母11-1-HOΔ具有代表性,获得的单倍体是进一步研究黄酒酵母遗传基础和代谢机制的重要材料。  相似文献   

12.
Background and Aims: 3‐Isopropyl‐2‐methoxypyrazine (IPMP) is both a grape‐ and insect‐derived trace compound found in wine that can contribute green characters. There has been renewed interest in examining how wine IPMP concentrations can be modulated due to recent concerns regarding ladybug taint – an off‐flavour from IPMP extracted from Harmonia axyridis (Pallas) (multicoloured Asian lady beetle). This study sought to determine the influence of commercial Saccharomyces yeast strains on IPMP concentration in Cabernet Sauvignon wines and to describe their sensory impact. Methods and Results: Rehydrated juice from Cabernet Sauvignon concentrate was spiked with 30 ng/L IPMP and fermented in triplicate by yeast strains Lalvin BM45, Lalvin EC1118, Lalvin ICV‐D21 or Lalvin ICV‐D80. IPMP concentration was determined using headspace solid‐phase micro‐extraction coupled with gas chromatography mass spectrometry (HS‐SPME‐GC‐MS), and was unchanged from juice levels in wine fermented by EC1118, Lalvin D21 and Lalvin D80 but increased by 11 ng/L (29%) in wine fermented by Lalvin BM45. Yeast strains differed in their sensory impact on wine made from IPMP‐spiked juice for five aroma and four flavour attributes. Conclusions: HS‐SPME‐GC‐MS allows for sensitive measurement of IPMP that, for the first time, has demonstrated the capacity for wine yeast to affect IPMP concentration. Yeast strains demonstrate varying ability to mask green or ladybug taint characters in wine. Significance of the Study: This information should be useful in guiding selection of yeast strains for juices of high IPMP concentration, including those that are multicoloured Asian lady beetle‐affected, under‐ripe or from varieties with high methoxypyrazine loads such as Cabernet Sauvignon.  相似文献   

13.
Ethyl carbamate (EC), which is present in Chinese rice wine, has a large potential for carcinogenicity and genotoxicity. EC is produced during the process of rice wine fermentation and storage. High concentrations of precursors, as well as high temperatures, will significantly accelerate the formation of EC. The present work aims to reduce EC formation by optimizing the production process, especially the boiling procedure. With various boiling sterilization temperatures, EC accumulated to different concentrations but the lower the temperature, the less EC was formed. To preserve the quality traits of Chinese rice wine, including biological and non‐biological stability, as well as the sugar component, an 80°C boiling temperature is suggested. The present study provides direction for process optimization, which combined with improved production technology and metabolic engineered yeast strains, can reduce the content of EC in Chinese rice wine. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

14.
Ethyl carbamate (EC) is a naturally occurring component in the fermented products, especially the Chinese yellow rice wine. EC has been found showing a potential for carcinogenity and causing food safety problems. This study is to investigate the application of the existing HPLC‐FLD method to the analysis of EC in Chinese yellow rice wine, and to validate it for EC analysis with high through‐out and applicability in Chinese yellow rice wine sample. The parameters examined in this study were fully evaluated. Results indicated that good linearity was obtained with a correlation coefficient exceeding 0.9990, the limit of detection and quantification was 73.2 and 243.9 μg L?1, respectively. Recoveries ranged between 98.30% and 101.30%, and the precision of this method was lower than 5% (RSD). The method conducted in this work was successfully applied to determine EC concentration in Chinese yellow rice wine samples from different origins. The negative correlation between EC formation and urea level in yellow rice wine samples is evaluated with the developed HPLC‐FLD method.  相似文献   

15.
Ethyl carbamate (EC) is a potential carcinogenic compound present in most of the fermented foods. In this work, EC was inhibited through different strategies during vinification of Chinese yellow rice wine. EC can be inhibited by the use of ornithine in contrast to the control at peak point. However, the utilisation of urease resulted in little inhibitive effect on EC. The comparative data of intracellular ornithine transcarbamylase (OTCase) and arginine deiminase (ADI) among four experiments showed that EC was positively regulated by intracellular OTCase, but ADI was not determined. Extracellular urea and citrulline content was significantly increased by adding ornithine (< 0.05), whereas ethanol played a minor role in EC formation. The correlation analysis between EC and OTCase or urea revealed a linear association (correlation coefficients above 0.8). These findings suggested that OTCase may be a required factor regulating EC formation during the brewing of Chinese yellow rice wine.  相似文献   

16.
The amino acid leucine has been shown previously to be transported into a yeast cell by at least three permeases: the general amino acid permease, a high-affinity permease (S1) and a low-affinity permease (S2). We isolated the gene BAP2 as a multicopy suppressor of the YPD phenotype of aat1leu2 yeast. BAP2 has been identified previously as encoding an amino acid permease which transports branched-chain amino acids. In order to align the genetic and biochemical studies of leucine uptake we completed a detailed kinetic analysis of yeast strains in which the BAP2 gene was disrupted and compared this to the kinetics of uptake of the parental strain. We demonstrate that BAP2 encodes the high-affinity leucine permease previously called S1. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR+] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR+] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR+] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR+] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR+] cells in the industrial sake strains but not in the kimoto strains.  相似文献   

18.
19.
Alcohol acetyltransferase (AATase), which is mainly encoded by ATF1, is one of the most important enzymes for acetate ester synthesis. On the other hand, isoamyl acetate is degraded into a higher alcohol under the catalysis of IAH1‐encoded esterase. In this study, Chinese Saccharomyces cerevisiae was used as the parent strain to construct an ATF1 overexpression and IAH1 disruption mutant. The results show that after 5 days of pre‐fermentation, the concentrations of ethyl acetate, isoamyl acetate and isobutyl acetate in the yellow rice wines fermented with EY1 (pUC‐PIAK) increased to 468.94 mg L?1 (which is approximately 22‐fold higher than that of the parent cell RY1), 99.86 and 7.69 mg L?1 respectively. Meanwhile, isoamyl alcohol production was reduced to 56.37 mg L?1 (which is approximately 50% of that produced by the parent strain RY1). Therefore, ATF1 overexpression and IAH1 disruption can significantly increase acetate esters contents and reduce isoamyl alcohol content in Chinese yellow rice wine, thereby paving the way for breeding an excellent yeast strain for high‐quality Chinese yellow rice wine production.  相似文献   

20.
The aim of the research was to study the volatile composition of mango wine fermented with two Williopsis yeast strains: Williopsis saturnus var. mrakii NCYC500 and W. staurnus var. suaveolens NCYC2586. Thirty terpenoids, twenty‐six esters, ten alcohols, nine acids, seven aldehydes and ketones, two ethers, two phenols and one sulphur compound were identified in the mango wine fermented with strain NCYC500, while twenty‐seven terpenoids, thirty esters, eleven alcohols, eight acids, eight aldehydes and ketones, three ethers, two phenols, one sulphur compound and one furan were detected in the mango wine fermented with the strain NCYC2586. The kinetic changes, final concentrations and odour activity values of major volatiles were compared between the two Williopsis yeast strains and also with other yeast reported in the literature. The results showed that Williopsis yeast strains NCYC500 and NCYC2586 were high producers of acetic acid and acetate esters, but low producers of medium‐ to long‐chain fatty acids and their corresponding ethyl esters. Unlike mango wine fermented with Saccharomyces cerevisiae, most terpenoids derived from mango juice were retained in the resultant mango wine fermented with the two Williopsis yeast strains, suggesting the mango wine could retain the aromatic hints of fresh mango.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号