首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Acquisition of a great number of energy-filtered images in a TEM (EFTEM) around the characteristic signal with a low energy-selecting slit allows display of the electron energy loss (EEL)-spectrum of regions of interest (ROIs) of a sample. These EEL-spectra can be submitted to the different treatments already in use for electron energy loss spectroscopy (EELS). In particular, it is possible to fit the experimental background with different mathematical models, using images acquired below and above a characteristic ionization edge. After this fitting, elemental maps can be computed by subtraction of the extrapolated/interpolated background from the characteristic images. In this work, we compared two mathematical models for background fitting-the Egerton power law and the log-polynomial law. We studied the low-energy region (40-150 eV) and a higher-energy region (350-600 eV) with the aid of software for interactive processing of EFTEM image series that we developed. The analyzed elements were the constitutive elements: iron, phosphorus, nitrogen, and oxygen in several biological materials. Two analytical TEMs, one equipped with a post-column and the other with an in-column spectrometer, were used. Our experimental results confirm that the power law is very sensitive to the value of the energy loss of the pre-edge images when the background is computed by extrapolation. The log-polynomial model is less sensitive than the power law model to the value of the energy loss of the pre-edge images in the low energy region. For the oxygen K edge at 535 eV, it gives the best fit when it is combined with the interpolation method. The use of programs that facilitate the handling of EFTEM image series, and the controlled calculation of the background under the characteristic images, represent a step forward in the generation of elemental maps.  相似文献   

2.
礼花弹燃烧时间是指其升空后,从炸开到熄灭的全部时间。为了实现对该参数的测量,从光电检测方面入手,提出了一种基于CCD相机的礼花弹燃烧时间精确测量方法,通过处理采集的视频图像,统计出含有目标图像的帧数,根据CCD相机帧频计算出时间,实现了礼花弹燃烧时间的自动化测量。实验表明该测量方法具有测试精度高、操作简单、安全性能好等优点。  相似文献   

3.
Nanoindentation experiments inside a transmission electron microscope are of much interest to characterize specific phenomena occuring in materials, like for instance dislocation movements or phase transformations. The key points of these experiments are (i) the sample preparation and the optimization of its geometry to obtain reliable results and (ii) the choice of the transmission electron microscope observation mode, which will condition the type of information which can be deduced from the experiment. In this paper, we will focus on these two key points in the case of nanoindentation of zirconia, which is a ceramic material well known to be sensitive to stress because it can undergo a phase transformation. In this case, the information sought is the stress localization at the nanometre scale and in real time. As far as the sample preparation is concerned, one major drawback of nanoindentation inside a transmission electron microscope is indeed a possible bending of the sample occurring during compression, which is detrimental to the experiment interpretation (the stress is not uniaxial anymore). In this paper, several sample preparation techniques have been used and compared to optimize the geometry of the sample to avoid bending. The results obtained on sample preparation can be useful for the preparation of ceramics samples but can also give interesting clues and experimental approaches to optimize the preparation of other kinds of materials. The second part of this paper is devoted to the second key point, which is the determination of the stress localization associated to the deformation phenomena observed by nanoindentation experiments. In this paper, the use of convergent beam electron diffraction has been investigated and this technique could have been successfully coupled to nanoindentation experiments. Coupled nanoindentation experiments and convergent beam electron diffraction analyses have finally been applied to characterize the phase transformation of zirconia.  相似文献   

4.
The resolution of an optical microscope is considerably less in the direction of the optical axis (z) than in the focal plane (x-y plane). This is true of conventional as well as confocal microscopes. For quantitative microscopy, for instance studies of the three-dimensional (3-D) organization of chromosomes in human interphase cell nuclei, the 3-D image must be reconstructed by a point spread function or an optical transfer function with careful consideration of the properties of the imaging system. To alleviate the reconstruction problem, a tilting device was developed so that several data sets of the same cell nucleus under different views could be registered. The 3-D information was obtained from a series of optical sections with a Zeiss transmission light microscope Axiomat using a stage with a computer-controlled stepping motor for movement in the z-axis. The tilting device on the Axiomat stage could turn a cell nucleus through any desired angle and also provide movement in the x-y direction. The technique was applied to 3-D imaging of human lymphocyte cell nuclei, which were labelled by in situ hybridization with the DNA probe pUC 1.77 (mainly specific for chromosome 1). For each nucleus, 3-D data sets were registered at viewing angles of 0°, 90° and 180°; the volumes and positions of the labelled regions (spots) were calculated. The results also confirm that, in principle, any angle of a 2p geometry can be fixed for data acquisition with a high reproducibility. This indicates the feasibility of axiotomographical microscopy of cell nuclei.  相似文献   

5.
Computational electrodynamics modelling plays an important role in understanding and designing new photonic devices. The results offered by these simulations are usually close-range field distributions or angular power emission plots. We describe a procedure to compute the optical microscopy image from simulated far-field scattering data using three-dimensional discrete Fourier transforms that can be used when the simulation software package do not include proper far-field to optical imaging projection routines. The method is demonstrated comparing simulated images with real images of nanowires obtained with a total internal reflection microscope.  相似文献   

6.
An automatic image analysis method was developed to determine the shape and size of spheroidal cells from a time series of differential interference contrast (DIC) images. The program incorporates an edge detection algorithm and dynamic programming for edge linking. To assess the accuracy and working range of the method, results from DIC images of different focal planes and resolutions were compared to confocal images in which the cell membrane was fluorescently labelled. The results indicate that a 1‐µm focal drift from the in‐focus plane can lead to an overestimation of cell volume up to 14.1%, mostly due to shadowing effects of DIC microscopy. DIC images allow for accurate measurements when the focal plane lies in a zone slightly above the centre of a spherical cell. In this range the method performs with 1.9% overall volume error without taking into account the error introduced by the representation of the cell as a sphere. As a test case, the method was applied to quantify volume changes due to acute changes of osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号