共查询到11条相似文献,搜索用时 0 毫秒
1.
This study investigates the effect of focused ion beam (FIB) current and accelerating voltage on electron backscatter diffraction pattern quality of yttria-stabilized zirconia (YSZ) and Nb-doped strontium titanate (STN) to optimize data quality and acquisition time for 3D-EBSD experiments by FIB serial sectioning. Band contrast and band slope were used to describe the pattern quality. The FIB probe currents investigated ranged from 100 to 5000 pA and the accelerating voltage was either 30 or 5 kV. The results show that 30 kV FIB milling induced a significant reduction of the pattern quality of STN samples compared to a mechanically polished surface but yielded a high pattern quality on YSZ. The difference between STN and YSZ pattern quality is thought to be caused by difference in the degree of ion damage as their backscatter coefficients and ion penetration depths are virtually identical. Reducing the FIB probe current from 5000 to 100 pA improved the pattern quality by 20% for STN but only showed a marginal improvement for YSZ. On STN, a conductive coating can help to improve the pattern quality and 5 kV polishing can lead to a 100% improvement of the pattern quality relatively to 30 kV FIB milling. For 3D-EBSD experiments of a material such as STN, it is recommended to combine a high kV FIB milling and low kV polishing for each slice in order to optimize the data quality and acquisition time. 相似文献
2.
Focused ion beam (FIB) milling has been used for fast prototyping of lithium niobate (LiNbO3, LN) devices with feature size from sub-to hundreds of micrometers. However, a promising and challenging depth range of tens-of-nanometers or below is rarely attended. Moreover, the surface roughness, related closely with device performances, is particularly non-negligible for such an ultra-shallow etching. Here, the surface roughness evolution was studied on ultra-shallow FIB etched LN structures. It was found that the inhomogeneous etching of the metallic film, coated on LN surface to avoid charge accumulation, had a detrimental effect on the LN surface roughness control. By thinning the gold thickness to 7 nm, sub-nanometer surface roughness was reported for etching depth of several nanometers. This work paves the way towards a homogenous and ultra-shallow FIB milling of LN nano-structures. 相似文献
3.
Focused ion beam (FIB) milling offers a novel approach to preparation of site‐specific cross‐sections of heterogeneous catalysts for examination in the transmission electron microscope (TEM). Electron‐transparent sections can be obtained without the need to embed or grind the original sample. Because the specimen can be imaged in the FIB with submicrometre resolution before, during and after milling it is possible to select precisely the region from which the section is removed and to control the thickness of the section to within tens of nanometres. The ability to produce sections in this way opens the possibility of studying a range of catalyst systems that have previously been impossible to examine with the TEM. 相似文献
4.
Quantitative off-axis electron holography of GaAs p-n junctions prepared by focused ion beam milling
D. COOPER R. TRUCHE A.C. TWITCHETT-HARRISON† R.E. DUNIN-BORKOWSKI† & P.A. MIDGLEY† 《Journal of microscopy》2009,233(1):102-113
Focused Ion beam (FIB) prepared GaAs p-n junctions have been examined using off-axis electron holography. Initial analysis of the holograms reveals an experimentally determined built-in potential in the junctions that is significantly smaller than predicted from theory. In this paper we show that through combinations of in situ annealing and in situ biasing of the specimens, by varying the intensity of the incident electron beam, and by modifying the FIB operating parameters, we can develop an improved understanding of phenomena such as the electrically 'inactive' thickness and subsequently recover the predicted value of the built-in potential of the junctions.
PACS numbers: 85.30.De 相似文献
PACS numbers: 85.30.De 相似文献
5.
Investigation of fatigue crack initiation facets in Ti‐6Al‐4V using focused ion beam milling and electron backscatter diffraction 下载免费PDF全文
In the very high cycle fatigue regime, internal crack initiation can occur in Ti‐6Al‐4V because of the formation of facets, which are α grains that have fractured in a transcrystalline and planar manner. Because this crack initiation phase occupies most of the fatigue life, it is essential to understand which mechanisms lead to facet formation. Fatigue tests have been performed on drawn and heat‐treated Ti‐6Al‐4V wires, and the facets at internal crack initiation sites have been analysed in detail in terms of their appearance, their spatial orientation and their crystallographic orientation. The facets were not smooth, but showed surface markings at the nanoscale. In nearly all cases, these markings followed a linear pattern. One anomalous facet, in a sample with the largest grain size, contained a fan‐shaped pattern. The facets were at relatively steep angles, mostly between 50° and 70°. Cross‐sections of the fracture surfaces have been made by focused ion beam milling and were used to measure the crystallographic orientation of facets by electron backscatter diffraction. Most facet planes coincided with a prismatic lattice plane, and the linear markings were parallel to the prismatic slip direction, which is a strong indication that prismatic slip and slip band formation led to crack initiation. However, the anomalous facet had a near‐basal orientation, which points to a possible cleavage mechanism. The cross‐sections also exposed secondary cracks, which had formed on prismatic lattice planes, and in some cases early stage facet formation and short crack growth phenomena. The latter observations show that facets can extend through more than one grain, and that there is crack coalescence between facets. The fact that drawn wires have a specific crystallographic texture has led to a different facet formation behaviour compared to what has been suggested in the literature. 相似文献
6.
7.
In this paper, synthetic fluorapatite–gelatine composite particles are prepared for transmission electron microscopy (TEM) studies using two methods based on focused ion beam (FIB) milling. TEM studies on the FIB‐prepared specimens are compared with TEM observations on samples prepared using an ultramicrotome. The results show that ultramicrotome slicing causes significant cracking of the apatite, whereas the ion beam can be used to make high‐quality, crack‐free specimens with no apparent ion beam‐induced damage. The TEM observations on the FIB‐prepared samples confirm that the fluorapatite composite particles are composed of elongated, preferentially orientated grains and reveal that the grain boundaries contain many small interstices filled with an amorphous phase. 相似文献
8.
阶段离子束辅助法制备基频减反膜 总被引:2,自引:0,他引:2
在研究阶段离子束辅助制备方式对薄膜性质影响的基础上,采用电子枪蒸发及离子束辅助沉积制备了氧化铪及氧化硅单层膜,采用阶段离子束辅助沉积及全程非离子束辅助沉积制备了基频减反膜。测量了所有样品的弱吸收、残余应力和激光损伤阈值。结果发现,相对电子枪热蒸发制备的样品,离子束辅助沉积的单层膜具有大的弱吸收、低的激光损伤阈值,且张应力减小,压应力增加;阶段离子束辅助沉积制备的减反膜剩余应力变小,弱吸收稍微增加,激光损伤阈值从10.91 J/cm2增加到18 J/cm2。分析表明,离子束辅助沉积在引入提高样品激光损伤阈值有利因素的同时,也引入 了不利因素,阶段离子束辅助沉积在引入有利因素的同时,有效减少了不利因素的引入,从而提高了样品的激光损伤阈值。 相似文献
9.
Porous TiO2 nanowire microsphere constructed by spray drying and its electrochemical lithium storage properties 下载免费PDF全文
Lv Chunju Tian Hu Kangying Shu Da Chen Guanglei Tian 《Microscopy research and technique》2014,77(2):170-175
Porous TiO2 nanowire microspheres with greatly decreasing agglomeration were successfully prepared by spray drying of hydrothermal reaction suspension, followed by calcination at 350°C. The as‐obtained nanowire microspheres with TiO2‐B structure reach an initial discharge capacity 210 mAh g?1 with an irreversible capacity 25 mAh g?1 at a current density of 20 mA g?1. For the 450°C‐calcined one with anatase TiO2 crystal structure, the initial discharge capacity is 245 mAh g?1 but with a much higher irreversible capacity of 80 mAh g?1. The hierarchical porous structure in the 350°C‐calcined TiO2 nanowire microspheres collapsed at 450°C, annihilating the main benefit of nanostructuring. Microsc. Res. Tech. 77:170–175, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
10.
Post‐thinning using Ar ion‐milling system for transmission electron microscopy specimens prepared by focused ion beam system 下载免费PDF全文
We investigate Ar ion‐milling rates and Ga‐ion induced damage on sample surfaces of Si and GaAs single crystals prepared by focused ion beam (FIB) method for transmission electron microscopy observation. The convergent beam electron diffraction technique with Bloch simulation is used to measure the thickness of the Ar‐ion milled samples to calculate the milling rates of Si and GaAs single crystals. The measurement shows that an amorphous layer is formed on the sample surface and can be removed by further Ar‐ion milling. In addition, the local symmetry breaking induced by FIB is investigated using quantitative symmetry measurement. The FIBed‐GaAs sample shows local symmetry breaking after FIB milling, although the FIBed‐Si sample has no considerable symmetry breaking. 相似文献
11.
ITO thin films prepared by electron beam evaporation with End-Hall ion source assisted without heating to the substrate 总被引:1,自引:1,他引:1
1Introduction ITO(indiumoxidedopedwithtin)trans parentconductingfilmshaveuniqueopticaland electricalpropertiesofhightransmittanceinthe visibleregionandstrongreflectanceintheinfra redregionaswellastheexcellentconductivity.Forthesecharacteristics,ITOfilmsplayanim portantroleinthefieldofoptoelectronicde vices,suchastransparentelectrodeforelectro magneticinterference(EMI)shielding,electro chromicwindow[1],liquidcrystaldisplays(LCD)[2],andarchitecturalapplications.Ava rietyofthinfilmdepositiont… 相似文献