首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The design of a new cable-driven robot for large-scale manipulation is presented with focus on the tension condition in the cables. In this robot, the arrangement of the cables is such that the moving platform has three translational motions. The robot has potentials for large-scale robotic manipulations, machining of large parts and material handling. The design analysis presented here is towards the synthesis of the robot as well as the sizing of the actuators and cables. The synthesis of this robot is dependent on the results of the tensionable workspace analysis previously published by the Alikhani et al. [6]. The analysis of the cable forces is presented in detail, which is then used to size the actuators. For this purpose, a geometrical approach is used to represent the capability of the end-effector for applying forces and moments as convex polyhedra. The design problem is then reduced to the sizing of these polyhedra according to the design requirements and manufacturing limitations. A prototype is also designed and fabricated, which is presented at the end to further elaborate on the proposed approach.  相似文献   

2.
The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the superposition principle.  相似文献   

3.
This work proposes application of a state-dependent Riccati equation (SDRE) controller for wheeled mobile cooperative manipulators. Implementation of the SDRE on a wheeled mobile manipulator (WMM) considering holonomic and non-holonomic constraints is difficult and leads to instability of the system. The present study introduces a method of controlling the WMMs including: a general formulation, state-dependent coefficient parameterization, and control structure of the SDRE. Overcoming the problem of instability of the WMM resulted in control design for a system of cooperative manipulators mounted on a wheeled mobile platform. Optimal load distribution (OLD) was employed to distribute the load between the cooperative arms. The presence of obstacles and the probability of a collision between multiple robots in a workspace are the motivations behind employment of the artificial potential field (APF) approach. Two cooperative manipulators mounted on a mobile platform retrieved from Scout robot were modeled and simulated for situations such as controlling multiple mobile bases (collision avoidance), a cooperative system of manipulators, and moving obstacle avoidance. The OLD improved the load capacity, precision, and stability in motion of the cooperative system. Compatibility of the APF within the structure of the SDRE controller is another promising aspect of this research.  相似文献   

4.
This paper aims to propose a novel design approach for on-line path planning of the multiple mobile robots system with free collision. Based on the artificial bee colony (ABC) algorithm, we propose an efficient artificial bee colony (EABC) algorithm for solving the on-line path planning of multiple mobile robots by choosing the proper objective function for target, obstacles, and robots collision avoidance. The proposed EABC algorithm enhances the performance by using elite individuals for preserving good evolution, the solution sharing provides a proper direction for searching, the instant update strategy provides the newest information of solution. By the proposed approach, the next positions of each robot are designed. Thus, the mobiles robots can travel to the designed targets without collision. Finally, simulation results of illustration examples are introduced to show the effectiveness and performance of the proposed approach.  相似文献   

5.
Parallel processing plays an important role in sensor-based control of intelligent mobile robots. This paper describes the design and implementation of a parallel processing architecture used for real-time, sensor-based control of mobile robots. This architecture takes the form of a network of sensing and control nodes, based on a novel module that we call Locally Intelligent Control Agent (LICA). It is a hybrid control architecture containing low-level feedback control loops and high-level decision making components. All the sensing, planning, and control tasks for intelligent control of a mobile robot are distributed across such a network, and operate in parallel. It has been used successfully in many experiments to perform planning and navigation tasks in real-time. Such a generic architecture can be readily applied to many diverse applications.  相似文献   

6.
Singularity loci of planar parallel manipulators with revolute actuators   总被引:6,自引:0,他引:6  
The determination of the singularity loci of planar parallel manipulators is addressed in this paper. The inverse kinematics of two kinds of planar parallel manipulators (a two-degree-of-freedom manipulator and a three-degree-of-freedom manipulator) are first computed and their velocity equations are then derived. At the same time, the branches of the manipulators are distinguished by the introduction of a branch index Ki. Using the velocity equations, the singularity analysis of the manipulators is completed and expressions which represent the singularity of the manipulators are obtained. A polynomial form of the singularity loci is also derived. For the first type of singularity of parallel manipulators, the singularity locus is obtained by finding the workspace limits of the manipulators. For the second type of singularity, the loci are obtained through the solution of nonlinear algebraic equations obtained from the velocity analysis. Finally, the graphical representation of the complete singularity loci of the manipulators is illustrated with examples. The algorithm introduced in this paper allows the determination of the singularity loci of planar parallel manipulators with revolute actuators, which has been elusive to previous approaches.  相似文献   

7.
This paper presents a Distributed Predictive Control (DPC) approach for the solution of a number of motion and coordination problems for autonomous robots. The proposed scheme is characterized by a multilayer structure: at the higher layer the reference trajectories of the robots are computed as the solution of suitable optimization problems. It is shown that, at this level, the definition of the cost function to be minimized allows to consider many different problems, such as formation control, coverage and optimal sensing, containment control, inter-robot and obstacle collision avoidance, and patrolling in an unknown environment. At the lower layers of the control structure, proper state and control reference trajectories are defined and a robust Model Predictive Control (MPC) problem is solved by each robot. To reduce the computational burden required by the algorithm, collision and obstacle avoidance constraints are reformulated in linear terms, so that the optimization problem to be solved on-line is a Quadratic Programming (QP) one. A number of experimental and simulation results are reported to witness the flexibility and performances of the method.  相似文献   

8.
对平面欠驱动机器人的避障运动规划问题进行了研究,提出了一种利用遗传算法解决此类系统避障问题的新方法。通过引入虚拟弹簧—阻尼系统,在障碍物存在的情况下对系统非完整约束方程的广义力进行修正,采用部分稳定规划器进行运动规划,建立了基于能量的适应度函数,并利用遗传算法对提出的适应度函数进行全局优化,得到了部分稳定规划器的最优切换顺序,进而实现了欠驱动机器人的无碰撞路径规划。最后以平面3R欠驱动机器人为例进行了仿真实验,验证了该方法的有效性。  相似文献   

9.
对平面欠驱动机器人的避障运动规划问题进行了研究,提出了一种利用遗传算法解决此类系统避障问题的新方法。通过引入虚拟弹簧—阻尼系统,在障碍物存在的情况下对系统非完整约束方程的广义力进行修正,采用部分稳定规划器进行运动规划,建立了基于能量的适应度函数,并利用遗传算法对提出的适应度函数进行全局优化,得到了部分稳定规划器的最优切换顺序,进而实现了欠驱动机器人的无碰撞路径规划。最后以平面3R欠驱动机器人为例进行了仿真实验,验证了该方法的有效性。  相似文献   

10.
In this paper, we present a method, based on interval analysis, to solve the problem of designing cable-driven parallel manipulators (CDPMs) for a desired workspace. The constraint of having positive cable tensions ensuring the equilibrium of the platform has to be satisfied within the given workspace. The proposed algorithm is based on interval analysis, which covers the entire workspace and hence guarantees a singularity-free workspace. Furthermore, the algorithm is capable of finding all possible solutions for this problem and an optimal one is selected according to the user-defined criterion. Two examples are selected to show the efficiency of the developed algorithm in solving this complex problem. The first one deals with the design of a planar CDPM and the second one considers a spatial CDPM. In both cases, the algorithm succeeded to find all possible designs from which the designer can select a solution that fits best his application.  相似文献   

11.
Reconfigurable robots are set to become a vital factor in the theoretical development and practical utilization of robotics. The core problem in this scientific area is steady information transfer between a swarm and its organisms and vice versa. To this end, we present a basic theoretical framework that stipulates the interoperation between the two modes. We evaluate our proposed framework by constructing 100 mobile microrobots of three different types that initiate the processes of self-reconfigurability and self-repair. The autonomous decision to self-aggregate to an organism mainly derives from the necessity to overcome existing obstructive environmental conditions, e.g. ramps or clefts. The methodological dichotomy that we have chosen to evaluate our concept was to pursue in parallel an approach based on embodied distributed cognition and an evolutionary path mainly based on artificial genomes and reproduction. In this paper, we evaluate these two different approaches in two distinct grand challenges and present the main results.  相似文献   

12.
In this paper, the problem of motion planning for parallel robots in the presence of static and dynamic obstacles has been investigated. The proposed algorithm can be regarded as a synergy of convex optimization with discrete optimization and receding horizon. This algorithm has several advantages, including absence of trapping in local optimums and a high computational speed. This problem has been fully analyzed for two three-DOF parallel robots, ie 3s-RPR parallel mechanism and the so-called Tripteron, while the shortest path is selected as the objective function. It should be noted that the first case study is a parallel mechanism with complex singularity loci expression from a convex optimization problem standpoint, while the second case is a parallel manipulator for which each limb has two links, an issue which increases the complexity of the optimization problem. Since some of the constraints are non-convex, two approaches are introduced in order to convexify them: (1) A McCormick-based relaxation merged with a branch-and-prune algorithm to prevent it from becoming too loose and (2) a first-order approximation which linearizes the non-convex quadratic constraints. The computational time for the approaches presented in this paper is considerably low, which will pave the way for online applications.  相似文献   

13.
A path planning algorithm for industrial robots   总被引:1,自引:0,他引:1  
Instead of using the tedious process of robot teaching, an off-line path planning algorithm has been developed for industrial robots to improve their accuracy and efficiency. Collision avoidance is the primary concept to achieve such goal. By use of the distance maps, the inspection of obstacle collision is completed and transformed to the configuration space in terms of the robot joint angles. On this configuration map, the relation between the obstacles and the robot arms is obvious. By checking the interference conditions, the collision points are indicated with marks and collected into the database. The path planning is obtained based on the assigned marked number of the passable region via wave expansion method. Depth-first search method is another approach to obtain minimum sequences to pass through. The proposed algorithm is experimented on a 6-DOF industrial robot. From the simulation results, not only the algorithm can achieve the goal of collision avoidance, but also save the manipulation steps.  相似文献   

14.
In this paper, we discuss how to develop an appropriate collision avoidance strategy for car-following. This strategy aims to keep a good balance between traffic safety and efficiency while also taking into consideration the unavoidable uncertainty of position/speed perception/measurement of vehicles and other drivers. Both theoretical analysis and numerical testing results are provided to show the effectiveness of the proposed strategy.   相似文献   

15.
In this paper, we deal with nonholonomic wheeled mobile robots (WMR) modeled as uncertain nonlinear systems. Sources of uncertainties can be due to erroneous estimation of mass, inertia, and center of gravity and due to payload time‐varying. They also can be considered as external disturbances generated from unstructured environments. We are proposing the use of a robust linear quadratic regulator (RLQR) to deal with tracking problems of WMR. In order to guarantee the effectiveness of this control approach, the robot posture is measured through a high‐precision motion capture system. This RLQR encompasses in a unified framework all state and output uncertain parameters of the system and does not depend on any auxiliary parameter to be tuned. It is useful to be used in online applications. Experimental results are presented with a comparative study among the R‐LQR, the nonlinear control via game theory, and the standard proportional‐derivative controller plus computed torque (PD+CT).  相似文献   

16.
A real-time planning algorithm for obstacle avoidance of redundant robots   总被引:3,自引:0,他引:3  
A computationally efficient, obstacle avoidance algorithm for redundant robots is presented in this paper. This algorithm incorporates the neural networks and pseudodistance function D p in the framework of resolved motion rate control. Thus, it is well suited for real-time implementation. Robot arm kinematic control is carried out by the Hopfield network. The connection weights of the network can be determined from the current value of Jacobian matrix at each sampling time, and joint velocity commands can be generated from the outputs of the network. The obstacle avoidance task is achieved by formulating the performance criterion as D p>d min (d min represents the minimal distance between the redundant robot and obstacles). Its calculation is only related to some vertices which are used to model the robot and obstacles, and the computational times are nearly linear in the total number of vertices. Several simulation cases for a four-link planar manipulator are given to prove that the proposed collision-free trajectory planning scheme is efficient and practical.  相似文献   

17.
High-speed laser localization for mobile robots   总被引:3,自引:0,他引:3  
This paper describes a novel, laser-based approach for tracking the pose of a high-speed mobile robot. The algorithm is outstanding in terms of accuracy and computation time. The efficiency is achieved by a closed-form solution for the matching of two laser scans, the use of natural scan features and fast linear filters. The implemented algorithm is evaluated with the high-speed robot Kurt3D (4 m/s), and compared to standard scan matching methods in indoor and outdoor environments.  相似文献   

18.
We consider mobile robots made of a single body (car-like robots) or several bodies (tractors towing several trailers sequentially hooked). These robots are known to be nonholonomic, i.e., they are subject to nonintegrable equality kinematic constraints involving the velocity. In other words, the number of controls (dimension of the admissible velocity space), is smaller than the dimension of the configuration space. In addition, the range of possible controls is usually further constrained by inequality constraints due to mechanical stops in the steering mechanism of the tractor. We first analyze the controllability of such nonholonomic multibody robots. We show that the well-known Controllability Rank Condition Theorem is applicable to these robots even when there are inequality constraints on the velocity, in addition to the equality constraints. This allows us to subsume and generalize several controllability results recently published in the Robotics literature concerning nonholonomic mobile robots, and to infer several new important results. We then describe an implemented planner inspired by these results. We give experimental results obtained with this planner that illustrate the theoretical results previously developed.This research was partially funded by DARPA contract DAAA21-89-C0002 (Army), CIFE (Center for Integrated Facility Engineering), and Digital Equipment Corporation.  相似文献   

19.
Z. D.  T.  T.  T.  E. 《Robotics and Autonomous Systems》2003,44(3-4):261-271
This paper proposes a new communication and control architecture which improves the capability and the flexibility of multiple autonomous robot systems in performing a complicated task and coping with unpredictable situations. This system treats robot’s information as a Behavior Element Object (BEO) and a Task Object (TO) in terms of Object Oriented paradigm. Both BEO and TO can be serialized, so they can be communicated among the robots and behavior server system in the network. The action manager module, device module, and some checking mechanisms are also designed for executing new TO or BEO sent from other robots or a server system. A simulation and basic experiments are presented for a situation of robots’ relief for an emergency purpose.  相似文献   

20.
The Stewart platform, a representative of the class of parallel manipulators, has been successfully used in a wide variety of fields and industries, from medicine to automotive. Parallel robots have key benefits over serial structures regarding stability and positioning capability. At the same time, they present challenges and open problems which need to be addressed in order to take full advantage of their utility. In this paper, we propose a new approach for solving one of these key aspects: the solution to the forward kinematics in real-time, an under-defined problem with a high-degree nonlinear formulation, using a popular machine learning method for classification and regression, the Support Vector Machines. Instead of solving a numerical problem, the proposed method involves applying Support Vector Regression to model the behavior of a platform in a given region or partition of the pose space. It consists of two phases, an off-line preprocessing step and a fast on-line evaluation phase. The experiments made have yielded a good approximation to the analytical solution, and have shown its suitability for real-time application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号