首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rutile/anatase TiO2 heterojunction nanoflowers were prepared via a facile one-step hydrothermal approach using titanium tetrachloride and urea as the raw materials, cetyl trimethyl ammonium bromide (CTAB) as the template. The prepared TiO2 nanoflowers were characterized by XRD, SEM, TEM and BET analyses. The photocatalytic performance of the as-prepared TiO2 samples for methyl blue degradation under simulated solar light was investigated. TiO2 heterojunction nanoflowers with mixed rutile/anatase phase (prepared with 3 mmol CTAB) give the highest photocatalytic activity. In addition, TiO2 nanoflowers show excellent stability after 9 cycles under the same conditions. These results suggested that the mixed phase anatase/rutile TiO2 heterojunction nanoflowers have great potential for the future photodegradation of real dye waste water.  相似文献   

2.
《Ceramics International》2015,41(6):7461-7465
Titanium dioxide is widely used in a lot of applications. The properties of TiO2 strongly depend on its phase composition. The transformation temperature between phases is influenced by a lot of factors. One of them is a type of substrate under the TiO2 film. In presented work, thin films of TiO2 were deposited by the sol–gel method on silicon, stainless steel (304 L) and Co–Cr–Mo alloy (Vitallium). The process of anatase–rutile phase transformation was investigated by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) studies of deposited coatings. The results were compared with anatase–rutile transformations temperature of TiO2 powders obtained by analogous sol–gel process. The temperature of anatase–rutile phase transformation changed in the range of 700–1000 °C and strongly depends on a kind of substrate. It was found that anatase–rutile transformation of TiO2 coating proceeded at a higher temperature than rutilization of titania powders.  相似文献   

3.
The influences of heat-treatment temperature and activation time on the properties of TiO2 supported on spherical activated carbon (TiO2/SAC) were investigated. Nano-sized TiO2 was dispersed on the spherical activated carbon with the size of 10–30 nm. Some anatase phase of TiO2 was transformed to rutile phase of TiO2 with an increase of heat-treatment temperature. All of the TiO2/SAC photocatalysts had microporous structure, with the mesopore volume increasing over an activation time of 6 h. The TiO2/SAC photocatalysts obtained at activation times of 6 h and 9 h were observed synergistic effects between adsorption and photocatalysis in the removal of humic acid.  相似文献   

4.
《Ceramics International》2016,42(4):5113-5122
TiO2 nanoparticles are currently used as coating for self-cleaning building products. In order to achieve high self-cleaning efficiency for outdoor applications, it is important that titania is present as anatase phase. Moreover, it is desirable that the particle sizes are in nano-range, so that a large enough surface area is available for enhanced catalytic performance. In this work, TiO2 nanoparticles doped with 0–5 mol% Nb2O5 were synthesized by co-precipitation. Nb2O5 postponed the anatase to rutile transformation of TiO2 by about 200 °C, such that after calcination at 700 °C, no rutile was detected for 5 mol% Nb2O5-doped TiO2, while undoped TiO2 presented 90 wt% of the rutile phase. A systematic decreasing on crystallite size and increasing on specific surface area of TiO2 were observed with higher concentration of Nb2O5 dopant. Photocatalytic activity of anatase polymorph was measured by the decomposition rate of methylene blue under ultraviolet and daylight illumination and compared to commercial standard catalyst (P25). The results showed enhanced catalysis under UV and visible light for Nb2O5-doped TiO2 as compared to pure TiO2. In addition, 5 mol% Nb2O5-doped TiO2 presented higher photocatalytic activity than P25 under visible light. The enhanced performance was attributed to surface chemistry change associated with a slight shift in the band gap.  相似文献   

5.
《Ceramics International》2017,43(17):15288-15295
Nano-structured TiO2 coatings were produced by suspension high velocity oxy fuel (SHVOF) thermal spraying using water-based suspensions containing 30 wt% of submicron rutile powders (~180 nm). By changing the flame heat powers from 40 kW to 101 kW, TiO2 coatings were obtained with distinctive microstructures, phases and photocatalytic behaviour. Spraying with low power (40 kW) resulted in a more porous microstructure with the presence of un-melted nano-particles and a lower content of the anatase phase; meanwhile, high powers (72/101 kW) resulted in denser coatings and rougher surfaces with distinctive humps but not necessarily with a higher content of anatase. Linear sweep voltammetry (LSV) was used to evaluate the photocatalytic performance. Surprisingly, coatings with the lowest anatase content (~20%) using 40 kW showed the best photocatalytic behaviour with the highest photo-conversion efficiency. It was suggested that this was partially owing to the increased specific surface area of the un-melted nano-particles. More importantly, the structural arrangement of the similarly sized TiO2 nano-crystallites between rutile and antase phases also created catalytic “hot spots” at the rutile−anatase interface and greatly improved the photo-activity.  相似文献   

6.
《Ceramics International》2016,42(13):14862-14866
TiO2 was prepared by detonating a slurry explosive made of Ti precursor, ammonium nitrate, cyclotrimethylenetrinitramine (RDX), and polystyrene (EPS). X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and UV–vis diffuse reflection spectroscopy revealed that the sample was composed of mixed crystals of rutile and anatase TiO2 with irregular spherical shapes and 10 nm particle size. The minimum energy gap of the sample was 2.9 eV. An ideal TiO2 explosive was prepared from a precursor/ammonium nitrate/RDX ratio of 1:1:0.6 and 2 g of EPS as a density modifier.  相似文献   

7.
In the present study rare earth doped (Ln3+–TiO2, Ln = La, Ce and Nd) TiO2 nanofibers were prepared by the sol–gel electrospinning method and characterized by XRD, SEM, EDX, TEM, and UV-DRS. The photocatalytic activity of the samples was evaluated by Rhodamine 6G (R6G) dye degradation under UV light irradiation. XRD analysis showed that all the synthesized pure and doped titania nanofibers contain pure anatase phase at 500 °C but at 700 °C it shows both anatase and rutile phase. XRD result also shows that Ln3+-doped titania probably inhibits the phase transformation. The diameter of nanofibers for all samples ranges from 200 to 700 nm. It was also observed that the presence of rare-earth oxides in the host TiO2 could decrease the band gap and accelerate the separation of photogenerated electron–hole pairs, which eventually led to higher photocatalytic activity. To sum up, our study demonstrates that Ln3+-doped TiO2 samples exhibit higher photocatalytic activity than pure TiO2 whereas Nd3+-doped TiO2 catalyst showed the highest photocatalytic activity among the rare earth doped samples.  相似文献   

8.
TiO2 nanopowders have been synthesized via Ar/O2 thermal plasma oxidation of titanium butoxide (TBO) solutions stabilized with diethanolamine (DEA). Experiments were conducted by varying the O2 input in the plasma sheath (10–90 L/min) and the DEA/TBO molar ratio (R), while keeping the plasma generation power at 25 kW and the reactor pressure at 500 Torr. The resultant powders are mixtures of the anatase and rutile polymorphs in the studied range, whose anatase content and crystallite size exhibit weak dependence on the O2 input at a fixed R. Increasing R decreases the anatase content, signifying the role of CO gas, generated via oxidation of the organic precursor, on the phase structure. FE-SEM and TEM analysis show that the resultant powders contain majority of nanoparticles (<50 nm) and some large spheres (>100 nm), whose size and/or number tends to decrease at a higher O2 input, leading to gradually increased specific surface area. Raman spectroscopy reveals no significant differences in the crystallite size and oxygen-vacancy concentration of the nanocrystals by varying the O2 input.  相似文献   

9.
《Ceramics International》2016,42(11):13136-13143
Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process have been studied using differential thermal analysis (DTA), X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED) and high resolution TEM (HRTEM). The DTA result shows residual organic matter decomposed at 436 K. The transition temperature for amorphous precursor powders converted to anatase TiO2 occurred at 739 K. Moreover, the full anatase transition to rutile TiO2 occurred at 1001 K. The activation energy of anatase TiO2 formation was 128.9 kJ/mol. On the other hand, the activation energy of anatase transition to rutile TiO2 was 328.4 kJ/mol. Mesoporous structures can be observed in the TEM image.  相似文献   

10.
《Ceramics International》2016,42(5):5985-5994
Various morphologies of TiO2 nanostructures were synthesized by HNO3 assisted hydrothermal treatment with respect to the acid molarity (1 M, 3 M, and 8 M), temperature (110, 140, and 180 °C), and time (1, 3, and 6 h). An additional sample was synthesized inside the protonated titanate nanoribbon coated vessel with the acid molarity of 8M at 140 °C for 3 h. The crystal structure and morphology of the nanostructures synthesized were investigated using X-Ray diffractometer, scanning electron microscope, and transmission electron microscope. The results revealed that lower acid concentrations, longer synthesis durations and higher temperatures favored anatase phase formation. Meanwhile, a phase pure 3D lotus structure rutile TiO2 could be obtained by hydrothermal synthesis at 8M HNO3 concentration at 140 °C for 3 h using protonated H-titanate nanoribbons. A probable mechanism for the evolution of 3D rutile lotus structure was highlighted.  相似文献   

11.
Si-doped TiO2 nanoparticles with anatase crystalline phase were prepared by a hydrothermal method using acetic acid as the solvent. Photoelectrochemical studies showed that the photocurrent value for the 15% Si-doped TiO2 electrode (54.4 μA) was much higher than that of the pure TiO2 electrode (16.7 μA). In addition, the 15% Si-doped TiO2 nanoparticles displayed the highest photocatalytic activity under ultraviolet light irradiation. So doping suitable amount of Si in TiO2 nanoparticles was profitable for transferring photogenerated electrons and inhibiting the recombination of photogenerated electrons and holes. As a result, the photocatalytic activity of TiO2 nanoparticles was improved.  相似文献   

12.
The synergic effect of cation doping and phase composition for the further improvement of the photocatalytic activity of TiO2 under visible light is reported for the first time. Fe3 + and Sn4 + co-doped TiO2 with optimized phase composition were synthesized through a simple soft-chemical solution method. The visible-light-driven photocatalytic activity of Fe3 + and Sn4 + co-doped TiO2 was 5 times of that of Evonik P25 TiO2 using degradation of methylene blue as model reaction. The synthesized photocatalysts were characterized by powder X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, 119Sn Mössbauer spectroscopy, and X-ray absorption fine structure spectroscopy. It is indicated that Sn4 + doping can facilitate the phase transition from anatase to rutile. The different ratios of anatase and rutile can be achieved by tuning the amount of Sn4 + doped into the lattice. Furthermore, the doping of Sn4 + into TiO2 lattice can stabilize the phase composition when Fe3 + is co-doped. In the Fe3 + and Sn4 + co-doped TiO2, Sn4 + is mainly used to tune and stabilize the phase composition of TiO2 and Fe3 + acts as a doping cation to narrow the band gap of TiO2. Both band gap and phase composition of TiO2 can be tuned effectively by the simultaneous introduction of Fe3 + and Sn4 +. The synergic effect of optimized phase composition (anatase/rutile = 25/75) and narrowed band gap should be the two main reasons for the promoted photocatalytic activity of TiO2 under visible light.  相似文献   

13.
《Ceramics International》2017,43(14):11065-11070
A TiO2-Ti3C2Tx nanocomposite was prepared using a simple and facile one-step hydrothermal method. The small sized TiO2 nanoparticles were synthesized and assembled on the surface of Ti3C2Tx nanosheets using Ti3C2Tx itself as titanium source by in-situ technique. The microstructure of TiO2-Ti3C2Tx nanocomposite was characterized by means of XRD、FESEM、TEM、XPS and Raman, respectively. The effects of ethanol and hydrothermal holding time on the size of TiO2 nanoparticles were investigated. The results show that adding proper amount of ethanol into pure water results in decrease of the size of TiO2 nanoparticles. Under ethanol-water mixed solution, increasing the time of hydrothermal treatment results in growth and even aggregation of TiO2 nanoparticles. The TiO2 nanoparticles with average particle size of 30 nm were obtained when the hydrothermal treatment was conducted in ethanol-water mixed solution at 200 ℃ for 12 h.  相似文献   

14.
Anatase-type TiO2 (titania) doped with cerium up to 5 mol% was directly formed as nanometer-sized particles from TiO(NO3)2–Ce(NO3)2–NH4NO3–citric acid complex compound system by sol–gel auto-igniting synthesis process. The precursor gel was characterized by infrared spectroscopy and TG/DSC analysis. The XPS measurement showed that Ce(III) was easily oxidized to Ce(IV) at 550 °C and above. The XRD data, XPS spectra, and TEM selected-area diffraction patterns confirmed that cerium(IV) formed a solid solution in the anatase-type TiO2 powders. Doping of CeO2 into TiO2 shifted the phase transformation from anatase- to rutile-type structure to a high temperature. On the other hand, CeO2 was segregated on the surface of TiO2 and the rutile formation was accelerated during phase transformation from anatase to rutile at elevated temperature. When the cerium content was increased in the anatase phase, onset of optical absorption shifted to longer wavelengths, and absorption in the UV-light region and in the visible-light region over 400–500 nm clearly appeared in the diffuse reflectance spectra of the as-prepared Ce-doped TiO2.  相似文献   

15.
One-step route based on the thermal decomposition of the double salt (NH4)2TiO(SO4)2 (ammonium titanyl sulfate, ATS) is presented to prepare size-defined aggregates of Ti-based nanoparticles with structural hierarchy. The component of Ti-based networks is tunable from anatase/rutile TiO2, nitrogen-doped TiO2, TiNxO1−x, to TiN depending on the atmospheres and reaction temperatures. The as-prepared Ti-based powders were characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS), and BET surface area techniques. It is found that TiO2 in the predominant rutile phase could be achieved by the thermal decomposition of ATS in flowing Ar gas. Furthermore, the nitrogen-doped TiO2, TiNxO1−x solid solution and TiN were prepared by the thermal decomposition of ATS in flowing NH3 gas by varying the temperatures. The network of anatase TiO2 with a specific surface area up to 64 m2 g−1 contains large mesopores with a mean diameter of ca. 15 nm, and the large pore size allows more accessible surface and interface available for the photocatalytic degradation of large-molecule dyes. The photocatalytic activity of the prepared TiO2 and nitrogen-doped TiO2 under UV–vis light irradiation is compared to Degussa P-25 using the photocatalytic degradation of methylene blue (MB) as a model reaction. The anatase TiO2 nanoparticles derived from one-step route show the highly efficient photocatalytic activity for the degradation of MB in comparison with Degussa P-25. The presence of large-sized rutile in the TiO2 powder decreases the specific surface area and thus the powder exhibits a lower photocatalytic activity.  相似文献   

16.
V-doped TiO2 nanoparticles were synthesized by sonochemical process using titanium isopropoxide as a titanium source, vanadyl acetylacetonate as a dopant source. Sonication was conducted using sonic horn operated at 20 kHz for 20 min until the completely precipitated product was reached. The as-synthesized precipitates with various vanadium dopant (1–5 mol %) were calcined at 500–1000 °C for 4 h. The relevant physical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). The anatase phase TiO2 nanoparticles can be synthesized by sonochemical process. Post calcinations process results in the anatase-to-rutile phase transformation and the enhancement in crystallinity with increasing temperature. The results also indicate good incorporation of V ions in TiO2 lattices and significant effect of V dopant on alternation of interplanar spacing of TiO2.  相似文献   

17.
Process variables such as reaction temperature (55 to 90 °C), calcination temperature (450 to 750 °C), and concentration of TiCl4 precursor (26 to 105 mM) have been examined in order to tailor the surface area, crystallite size, and the anatase/rutile ratio of the polycrystalline TiO2 microcapsules prepared by a template-implantation route in heptane solvent. The hollow capsules are all non-aggregating with nanoporous shell structure. Among the process variables examined, the Brunauer–Emmett–Teller (BET) surface area and the anatase/rutile ratio are found critically dependent on the reaction temperature, in which a reduced reaction temperature (from 90 to 55 °C) leads to a higher BET value (from 8.4 to 36.4 m?2 g?1), a predominant anatase phase (weight fraction of the anatase phase increases from 0.20 to 0.84), and an improved photodegradation of aqueous methylene blue (MB) dye under UV exposure (the degradation rate increases from 0.5×10?2 to 5.5×10?2 min?1).  相似文献   

18.
A series of ordered mesoporous carbon–TiO2 (OMCT) materials with various weight percentages of TiO2 (50–75 wt%) were synthesized by evaporation-induced self-assembly and in-situ crystallization at various calcination temperatures (600–1200 °C) to evaluate the Li-ion storage performance. The OMCT has ordered 2D hexagonal mesoporous structures and the TiO2 nanocrystals with different phases are embedded into the frameworks of carbonaceous matrix. The reversible capacity of OMCT is highly dependent on the phase and content of TiO2, and the anatase TiO2 is a superior crystalline phase to rutile and TiN for Li-ion insertion. The OMCT65 which contains 35 wt% carbon and 65 wt% TiO2 shows a high capacity of 500 mAh g?1 at 0.1C after 80 cycles. In addition, OMCT65 exhibits a good cyclability and rate capability. The reversible capacity remains at 98 mAh g?1 at a high rate of 5C, and then recoveries to 520 mAh g?1 at 0.1C after 105 cycles. The excellent reversible capacity and rate capability of OMCT65 are attributed to the embedment of well-dispersed anatase TiO2 nanocrystals into the specific porous structure of OMCT, which can not only facilitate the fast Li-ion charge transport but can also strengthen the carbon–TiO2 co-constructing channels for lithiated reactions.  相似文献   

19.
Oxidation of commercial Ti2AlC MAX phase powders at 200–1000 °C has been investigated by XRD, XPS, SEM, STA and TGA coupled with FTIR. These powders are a mixture of Ti2AlC, Ti3AlC2, TiC and Ti1.2Al0.8. Oxidation at 400 °C led to disappearance of carbide phases from Ti 2p, Al 2p and C 1s XPS spectra. At 600 °C, powders changed from dark grey to light grey with a significant volume increase due to crack formation. Powders were severely oxidized by detecting rutile with minor anatase TiO2. At 800 °C, α-Al2O3 was detected while anatase transformed into rutile TiO2. The cracks were healed and disappeared. At 1000 °C, the Ti2AlC powders were fully oxidized into rutile TiO2 and α-Al2O3 with a change of powder color from light grey to yellow. FTIR detected the release of C as CO2 from 200 °C onwards but with additional CO above 800 °C.  相似文献   

20.
Different types of TiO2 (anatase, P25 and rutile) supported ruthenium catalysts were synthesized by wet impregnation and directly reduced in H2. The distribution characteristics of ruthenium species were thoroughly studied before and after trichloroethylene oxidation. The results show that ruthenium oxide species are very unstable in the anatase phase, but quite stable in the rutile phase of TiO2. This phenomenon results in different catalytic behaviors for the Ru/TiO2 catalysts. The Ru/TiO2 (P25) catalyst has the best catalytic performance among these catalysts. The complete conversion temperature of trichloroethylene is in the temperature range of 260–270 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号