首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将可以完全降解的生物质材料壳聚糖(CS)与明胶(GA)进行共混,制备CS/GA复合溶液,对复合溶液的表观黏度进行了测试。通过湿法纺丝制备CS/GA复合纤维,研究了复合纤维的基本性能。在共混体系中,壳聚糖分子与明胶分子之间的相互作用,使得复合溶液以及复合纤维的性能相比较纯壳聚糖有了明显改变。实验结果表明,CS/GA复合溶液的表观黏度与GA含量有关,GA逐渐增加时,复合溶液的表观黏度出现先增后减的趋势。CS/GA复合纤维的力学性能相比纯CS纤维有显著提升,当GA的质量分数为15%时,CS/GA复合纤维的力学断裂强度达到3.58 cN/dtex。扫描电镜观察CS/GA复合纤维表面光滑。  相似文献   

2.
以甲酸为丝素蛋白(SF)和壳聚糖(CS)的共同溶剂,采用静电纺丝法来制备SF/CS纳米纤维.采用扫描电镜观察纤维的形貌,分析SF/CS质量比、电场强度及纺丝流率对纤维形貌的影响.结果表明:SF/CS质量比大于80/20时,可以得到连续的纳米纤维,且纳米纤维直径随CS含量的增加呈先减小后增大的趋势,最小直径为71 nm;纳米纤维直径随电场强度的增大而减小,随纺丝流率的增加而增大.  相似文献   

3.
为研究静电纺丝工艺对CS/PVP纳米纤维膜纤维形貌和直径的影响,以甲酸为溶剂配制质量分数为4%的CS溶液,以无水乙醇为溶剂配制质量分数为35%的PVP溶液,将PVP溶液与CS溶液按质量比90∶10混合,搅拌均匀作为纺丝液,调节纺丝电压、接受距离和纺丝速率分别制备纳米纤维,借助扫描电镜(SEM)观察制备的纳米纤维形貌.结果表明,在选定的纺丝工艺参数中,纺丝电压对纤维的形貌和直径影响较大,而纺丝速率和接受距离对纤维的形貌和直径影响相对较小;当纺丝电压为18 k V、接受距离为12 cm、纺丝速率为0.2 m L/h时,纤维形貌较好.  相似文献   

4.
为开发高效低阻且滤效持久的空气过滤材料,采用静电纺丝技术对PVDF、PI两种极性不同的驻极体进行不同比例SiO_2纳米颗粒掺杂改性,并对所得SiO_2/PVDF和SiO_2/PI两种复合电纺膜的表面形貌、纤维直径、机械性能、荷电特性、过滤性能进行测试表征.结果表明:与SiO_2/PI复合纳米纤维膜相比,SiO_2/PVDF复合纳米纤维膜表面带有更高的初始表面电势,且电势衰减较慢;随着纳米SiO_2比例的提高,SiO_2/PVDF复合纳米纤维膜的荷电性能和过滤性能均先提高后下降;当SiO_2/PVDF质量比达到10/100时,其荷电性能和过滤性能均达最佳,此时初始表面电势达到-8.7 kV;面速率为32 L/min时其过滤效率为99.328%@0.26μm,过滤阻力约70 Pa.而SiO_2/PI复合纳米纤维膜的机械性能、荷电效果和过滤性能随着SiO_2比例的提高严重下降.  相似文献   

5.
通过湿法纺丝法制备了壳聚糖(CS)/聚乙烯醇(PVA)/硫化铜(CuS)杂化纤维,并使用戊二醛和三聚磷酸钠作为交联剂对纤维交联处理,研究了杂化纤维的基本性能。结果表明,在共混体系中,PVA的加入提高了复合溶液的黏度;红外光谱显示在交联剂的处理下成功制备了交联的杂化纤维;纤维的结晶度随着牵伸倍数的增加而提高;PVA质量分数为10%的CS/PVA/CuS杂化纤维的断裂强度最高,达到1.54 cN/dtex,比CS纤维提高了55.6%。扫描电镜观察到CS/PVA/CuS杂化纤维表面光滑。使用980 nm的近红外激光器测试了杂化纤维的光热转换效应,CS/PVA/CuS杂化纤维在90 s内升温达39.8℃,比CS纤维提高了28.8%。  相似文献   

6.
用静电纺丝技术制备壳聚糖/聚乙烯醇复合纳米纤维膜,探讨了不同浓度、分子量及聚乙烯醇添加比例对纳米纤维膜成形的影响,运用扫描电镜对纳米纤维膜的形貌进行了分析,同时对其力学和亲水性能进行了测试.结果表明:当分子量为5×105g/mol、质量分数为4%、聚乙烯醇的添加比例为40%时,所制备复合纳米纤维膜具有良好的形貌,具有一定的力学性能,且呈疏水性.  相似文献   

7.
电纺法制备壳聚糖/聚乙烯醇纳米纤维   总被引:1,自引:0,他引:1  
采用电纺法制备了壳聚糖/聚乙烯醇纳米纤维.考察了纺丝液配比和挤出速度对电纺纤维形貌的影响.结果表明当壳聚糖质量比小于70%时,共混溶液的可纺性较好,纤维直径随着壳聚糖含量的增大而减小;随着挤出速度的增大,电纺纤维直径有逐渐增大趋势,挤出速度为0.5~0.8 mL/h时得到的纤维形貌最佳.  相似文献   

8.
研究了纤维素及纤维素/羧化壳聚糖中空纤维膜的超滤速率、筛分系数、溶质透过性等透析性能,发现随着纤维素浓度的增加,纤维素中空纤维膜的透水速率下降,其筛分性能越来越好;随着羧化壳聚糖含量的增加,纤维素/羧化壳聚糖中空纤维膜的透水速率下降,筛分性能则是当羧化壳聚糖质量分数为30%时为最好,溶质的透过性都是随着相对分子质量的增加而不断下降的.  相似文献   

9.
采用电纺法制备了壳聚糖/聚乙烯醇纳米纤维。考察了纺丝液配比和挤出速度对电纺纤维形貌的影响。结果表明:当壳聚糖质量比小于70%时,共混溶液的可纺性较好,纤维直径随着壳聚糖含量的增大而减小;随着挤出速度的增大,电纺纤维直径有逐渐增大趋势,挤出速度为0.5~0.8mL/h时得到的纤维形貌最佳。  相似文献   

10.
应用静电纺丝技术制备石墨/聚乙烯醇(PVA)纳米纤维,并将该复合纤维收集成无纺布薄膜;采用扫描电子显微镜(SEM)观察了复合纤维的微观形貌和结构,利用宽频质谱仪测试了纤维的导电性,利用万能强力机测试了不同纳米石墨含量纤维薄膜的拉伸力学性能,并利用X射线衍射仪(XRD)和热重分析仪(TG)测试了复合纤维的物相及热力学行为.结果表明:在聚乙烯醇质量分数为8%、石墨质量分数为4%时,所制备的纳米纤维膜导电性最高,且力学性能最好,与纯PVA相比,电导率和断裂强度分别提高1个数量级和127.33%;XRD测试结果表明,纳米石墨成功附着在PVA中;TG结果表明,石墨/PVA复合纤维初始分解温度相对于纯PVA变化不大,当样品质量保持率为40%时,4%石墨/PVA复合纤维较纯PVA相比,其分解温度提高了35℃.  相似文献   

11.
为了改善面膜基布与脸部皮肤贴合性差、易翘起、吸液效果较差、皮肤有破损时不宜使用等缺点,对贴式面膜基布进行了开发研究.采用壳聚糖和粘胶纤维混纺的方法,对梳理、铺网、水刺等工艺进行优化设计,制备7种不同比例的壳聚糖/粘胶纤维水刺非织造材料用于面膜基布,对试样的缠结效果、力学性能、柔软性、透气性、保液率、抑菌性进行性能测试.结果表明:随着壳聚糖纤维比例的增加,试样缠结系数呈下降趋势,试样的断裂强度减小,壳聚糖纤维含量较多的水刺非织造布柔软性、透气性好,保水性能高,抑菌效果明显.当壳聚糖纤维含量达到10%时,水针能量A、B下的透气量分别可达到2 805和2 750 L/(m2·s),干态下的纵向断裂强度可达到60、66.5 N/5 cm,横向断裂强度可达到21.5、21.75 N/5 cm,试样的保液率分别高达1082.5%和1 047.5%,对大肠杆菌和金黄金黄色葡萄球菌的抑菌率分别达到29.5%和34%,达到了纺织品抗菌性能评价标准.  相似文献   

12.
采用静电纺丝法制得CS/PVA纳米纤维膜,并将其作为对铜、镉离子的吸附材料。通过扫描电子显微镜(SEM)观察到CS/PVA纳米纤维细而均匀且呈不规则的网状结构。力学性能测试结果表明CS/PVA纳米纤维膜的稳定性较好,为其广泛应用于金属离子吸附材料提供前提。系统探讨了吸附时间、pH值、金属离子初始浓度对吸附性能的影响。结果表明,CS/PVA纳米纤维膜对Cu~(2+)、Cd~(2+)的吸附作用在2 h内即可快速达到平衡,其吸附容量随着金属离子初始浓度、溶液pH值的增加而增大。此外,在100 mmol/L的稀盐酸(HCl)溶液中,Cu~(2+)、Cd~(2+)的脱附率在1min内可分别达到86.7%和91.3%。  相似文献   

13.
以溶液纺丝法制备了海藻酸钠/聚乙烯醇/羟基磷灰石复合纤维,采用正交试验法和单因素分析法对复合纤维制备工艺与断裂强度和镉离子吸附量的关系进行研究。结果表明,SA与PVA质量分数为6%、SA与PVA质量比为4∶1、凝固浴CaCl2质量分数为2%、凝固浴温度为60℃、纺丝头牵伸比为2倍时纤维的吸附量最大。随着羟基磷灰石含量的增加,复合纤维对镉离子吸附量大幅度提高。  相似文献   

14.
采用静电纺丝技术,以不同质量分数的石墨烯为增强剂,制备了不同实验参数的聚丙烯腈/石墨烯复合纳米纤维膜,观察并分析了它们的微观结构、透气性能和过滤性能,发现当石墨烯质量分数为1.0%、纺丝时间为30 min时,制备的聚丙烯腈/石墨烯复合纳米纤维膜过滤性能最优,此时纳米纤维膜的透气率达到144 mm/s,过滤效率为95.01%,阻力压降为60.76 Pa,品质因子达到较高值0.049 34 Pa-1。  相似文献   

15.
用共混法和原位杂化法分别合成了壳聚糖-SiO2杂化材料,研究了投料比对壳聚糖-SiO2杂化材料的结构以及耐水性、力学性能、Cu2+吸附性的影响.结果表明:与纯壳聚糖相比,共混法和原位杂化法合成的杂化膜材料的吸水倍率最高时分别比纯壳聚糖提高了108.3%和11.1%;共混法合成的杂化膜材料拉伸断裂强度随mTEOS/m壳聚糖的增加先增大后减小,而原位杂化法的则是随mTEOS/m壳聚糖的增加一直增大,分别比纯壳聚糖膜提高了19.9%和20.3%.同时,随着mTEOS/m壳聚糖的增大,两种方法制备的杂化材料的断裂伸长率均下降;而随着mTEOS/m壳聚糖值的增大,共混法合成的杂化膜对Cu2+的吸附能力则是先增强后逐渐降低,而原位杂化法的则一直降低.TGA分析表明:SiO2的引入并未改变壳聚糖的降解机理.SEM分析表明:复合材料是以纳米尺度的SiO2增强的杂化膜材料.  相似文献   

16.
以月桂酸和棕榈酸二元低共熔脂肪酸(LA-PA)、海藻酸钠(SA)、丝素蛋白(SF)、多壁碳纳米管(MWCNTs)为原料,以氯化钙为凝固浴,通过湿法纺丝制备复合相变纤维。通过FT-IR表征了MWCNTs含量对复合相变纤维氢键作用的影响,对复合相变纤维表面形态、力学性能、热性能、蓄热稳定性进行了表征。结果表明,随着MWCNTs含量的增加,复合相变纤维分子间氢键先增大后减小,分子内氢键含量先减小后增大;复合相变纤维的断裂强度先增大后减小,MWCNTs为0.4%时,其断裂强度达到最大值1.53 cN/dtex;复合相变纤维具有适宜的相变温度(17~37℃),相变焓为18~24 J/g;复合相变纤维经100次热循环后具有良好的蓄热耐久性。  相似文献   

17.
利用同轴静电纺丝技术,制备以丝素(SF)/明胶(GE)共混物为皮层,聚己内酯(PCL)为芯层的复合纳米纤维膜。研究不同芯层浓度对复合纳米纤维膜形貌、孔径、力学性能和生物相容性的影响。结果表明:所制备的SF/GE-PCL复合纳米纤维表面光滑且有明显的皮芯结构,随着芯层浓度由4%增大到10%,复合纳米纤维的平均直径从256nm增大到941nm,纤维膜的平均孔径从0.576μm增大到1.018μm,纤维膜的断裂强度和断裂应变增大,人皮肤成纤维细胞能在皮芯结构纳米纤维膜上黏附、生长和增殖。  相似文献   

18.
通过静电纺丝技术制备PVDF/PVDF-HFP复合纳米纤维膜,然后对其进行热压处理,采用FE-SEM对其形貌进行表征,并对其力学性能和防水透湿性能进行评价.结果表明:PVDF和PVDF-HFP溶液的最佳纺丝质量分数分别为9%和12%;热压处理后PVDF/PVDF-HFP复合纳米纤维膜具有优异的防水透湿性能,当复合纳米纤维膜中PVDF与PVDF-HFP的质量比为2∶1时,其耐静水压达到7 220 mm H2O,透湿量达到7 300 g/(m2·24 h).  相似文献   

19.
以聚氨酯为弹性结构相,纳米炭黑为导电功能相,基于非溶剂致相分离原理,通过湿法纺丝工艺制备纳米炭黑/聚氨酯弹性导电纤维,并研究不同炭黑含量(10%~50%)复合纤维的力学性能及导电性能。结果表明:复合纤维的导电性随着炭黑含量的增加而得到显著提高。炭黑的质量分数为40%时,复合纤维的电导率为7.6S/m,具有良好的导电性能,其力学性能变差,但不影响使用。在智能纺织品、传感器等方面有很好的应用前景。  相似文献   

20.
为了制备柔韧性好、弹性优良的低熔点复合纤维,以低熔点热塑性聚醚酯弹性体(LMTPEE)为皮层、聚对苯二甲酸乙二醇酯(PET)为芯层通过熔融纺丝法制备了偏心复合纤维。探讨了复合比对LMTPEE/PET偏心复合纤维横截面、结晶性能、取向性能、拉伸性能、热收缩性能、卷曲性能等的影响,以及热处理温度对复合纤维的卷曲形貌和黏结性能的影响。结果表明:不同复合比的复合纤维横截面均有稳定的偏心结构;随着复合比(皮与芯的体积比)从40∶60改变到50∶50、60∶40,复合纤维的断裂伸长率和干热收缩率呈现增大的趋势,断裂强度、声速值、熔融焓和结晶度均逐渐减小。复合比为60∶40的LMTPEE/PET偏心复合纤维在热处理温度140℃、热处理时间10 min时,具有较好的卷曲性能;热处理温度高于170℃、热处理时间10 min时,纤维间发生黏结。该结果可为低熔点自卷曲纤维的制备和应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号