首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文利用网格法计算腔特性所得资料计算了驻波边耦合腔电子直线加速器中电子的径向运动,分析了腔的电透镜特性,简单地考虑了空间电荷效应。分析和计算的结果表明,在短的加速器中,为改善束的聚焦特性,应采用适当的负注入角度;在较长的加速器中,可以用一个短磁透镜实现束的聚焦。  相似文献   

2.
单位长度上对带电粒子的最大可能的加速能力是直线加速器应用的一个最重要的指标。边耦合驻波加速结构具有高分路阻抗、高稳定性等一系列优点。我们知道,低能行波型电子直线加速器,采用射频反馈或小的耦合孔方法固然能减小加速器体积。但前者使系统复杂化;而后者将使束流通过增加困难。近十年来,有关边耦合腔结构驻波电子直线加  相似文献   

3.
一、引言边耦合腔结构由于稳定性好,特征阻抗高,目前国际上许多医用电子直线加速器已采用它作为加速结构。本文介绍一种新的边耦合腔结构,对它的设计计算方法进行分析。采用这种结构设计的一台电子直线加速器,能量4兆电子伏,脉冲束流150毫安,使用2兆瓦磁控管作功率源,长度才10厘米(通常的行波电子直线加速器长约1米)。下面将称这种结构为高梯度加速结构。  相似文献   

4.
电子直线加速器广泛应用于无损检测及放射治疗领域,能量大范围可调有利于实现物质识别和精准放射治疗。本文介绍一支keV/MeV能量可切换驻波加速管的设计与调配。该加速管采用双周期边耦合结构,工作频率为2 998 MHz。经过优化设计,整管由2个聚束腔和5个加速腔构成,通过在边耦合腔中使用能量开关调变加速电场分布,从而实现450 keV、6 MeV两档能量的切换输出。经过精密加工及整管测试调配,实现了高低两档束流能量所需的电场分布可调,验证了设计的合理性。  相似文献   

5.
为发展结构更加紧凑的小型医用电子直线加速器,开展了X波段驻波电子直线加速结构的研究。设计制造了一只工作频率为9316MHz,管长约15cm的2MeV全密封轴耦合驻波电子直线加速管。  相似文献   

6.
为发展紧凑型电子直线加速器,本文研制了一支C波段轴耦合驻波加速管。该加速管包括3个聚束腔单元和9个均匀加速腔单元,总长度约284 mm。根据射频相位聚焦原理进行了初步物理设计,并对整管腔链进行等效电路分析及仿真优化,从而确定了尺寸参数,最后进行了冷测调配及高功率出束实验。基于该流程研发了C波段驻波加速管,其工作频率为5 713.6 MHz,束流能量可达6 MeV,脉冲流强为84.5 mA。  相似文献   

7.
X—波段轴耦合驻波电子直线加速管物理设计与研究   总被引:4,自引:2,他引:2  
为发展结构更加紧凑的小型电子直线加速器,进行了X-波段驻波电子直线加速结构的研究。采用π/2模轴耦合驻波加速结构,频率为9300MHz;不使用任何外加聚焦器件,应用交变相位聚焦技术,使射频场在纵向聚束和加速的同时,实现横向聚焦。设计了工作频率为9300MHz、管长约150mm的2MeV轴耦合驻波电子直线加速管,给出了加速管物理设计参数。热测出束实验,馈入微波功率0.68MW,负角注入17keV电子束,得到脉冲流强>90mA、能量达2.4MeV的电子束,俘获效率好于30%,出口束靶点直径<1.4mm。  相似文献   

8.
一、引言耦合谐振腔链的分路阻抗ZT~2是驻波直线加速器设计和制造过程中的重要参量,由它可计算出加速器的能量增益。过去许多资料给出的ZT~2的数值往往是利用一个孤立加速腔测出来的,用此数据计算加速器的能量增益必然给出偏大的结果。这是因为整个谐振腔链的ZT~2不仅与单个谐振腔的几何形状、材料及表面光洁度有关,而且还与整个腔链的调谐  相似文献   

9.
分析了驻波电子直线加速器中电子受RF场的横向作用与其所处相位的关系,探讨了驻波直线加速器中的RF相位聚焦以及不对称场幅值分布对粒子横向动力学的影响,并给出利用相位聚焦和不对称场幅值分布技术设计的两只加速管实例。  相似文献   

10.
剂量率稳定性高是工业CT用驻波电子直线加速器的难点之一。加速器输出剂量率稳定性跟自动频率控制系统的性能直接相关。系统采用进口AFC组件和成熟的电子学线路,通过对系统中相关参数的合理调试,使加速器输出剂量率稳定性达到设计要求。  相似文献   

11.
一、QDJ-10电子直线加速器的组成这是一台行波电子直线加速器,它所用的加速管是建造BJ-10医用电子直线加速器的备用加速管,其设计参数见文献[1]。加速管采用的是三均匀段盘荷波导结构,工作频率2998 MHz,π/2模,三段共90个腔。总长220厘米。  相似文献   

12.
采用理论计算与ANSYS仿真相结合的方法,针对一种工作频率为975MHz,平均电场强度为3.7MV/m,加速质子能量范围从80MeV至300MeV的边耦合腔直线加速器的加速腔,进行了散热结构的设计。通过理论计算确定了冷却结构的基本尺寸,然后采用ANSYS进行了热-结构-高频多场耦合仿真。得到了该冷却结构下的频移为-0.427MHz,频移对温度的敏感度为9.93kHz/℃,均处于可控范围内。该设计方法和流程可用于其他类型的谐振腔冷却结构的设计。  相似文献   

13.
<正>电子直线加速器有行波和驻波两种工作方式,行波结构是在加速管末端接上匹配负载以吸收多余的能量,驻波结构则是使入射波和反射波在加速管内叠加形成驻波场以加速电子至较高能量。行波结构主要应用于科研用高能电子直线加速器及工业用高能电子束辐照等领域,驻波结构主要应用于医疗和无损检测等领域。早在20世纪40年代,国际上很多研究小组  相似文献   

14.
正电子直线加速器的加速结构主要包括行波结构和驻波结构,其中行波结构主要应用于科研用高能电子直线加速器及工业用高能电子束辐照等领域,驻波结构主要应用于医疗和无损检测等领域。中国原子能科学研究院开发的基于电子直线加速器的无损检测设备已形成系列产品,涵盖1/2、2/4、4/6、6/9、9/12 MeV双能无损检测加速  相似文献   

15.
本文介绍了10 MeV/100 kW的高平均束流功率工业辐照加速器束流动力学模拟结果及其加速结构的优化设计结果。加速器采用驻波双周期轴耦合结构,1个加速腔和1个耦合腔构成1个加速单元,其工作频率为325 MHz,工作模式为π/2,加速腔和耦合腔之间通过耦合狭缝在轴向以磁耦合的方式耦合在一起。使用SUPERFISH优化加速腔的有效分路阻抗、Kilp系数等关键参数。束流动力学方面,使用PARMELA模拟论证在粒子源提供2.5 keV、500 mA的电子束后,通过6个加速腔可得到10 MeV/100 kW的平均束流功率。加速腔优化完成后使用CST对耦合腔进行了设计,此时由6个加速单元组成的加速结构有效分路阻抗为23.9 MΩ/m、无载品质因数为29 347,各加速腔与相邻的耦合腔耦合系数为4.7%,工作模式与其相邻模式的最小频率间隔为2 MHz,每个加速单元功耗为290 kW。  相似文献   

16.
本文基于Pierce电子枪理论和拉普拉斯方程的有限差分解,采用了一种新的计算机方法设计电子直线加速器电子枪。该方法包括:(1)根据设计要求确定电子枪电极。(2)对确定的电子枪进行计算机分析,计算电子束特性。该方法比常用的电解槽模拟法精度高、时间省。与一般的计算机方法相比,它基本上实现了确定电子枪电极的自动化。轴对称平行流电子枪的设计表明,即使采用较大的网格,仍有较好的精度。最后,用该法设计了4 MeV驻波加速器电子枪。  相似文献   

17.
本文详细介绍了15~20兆电子伏医用行波反馈电子直线加速器设计计算的方法和结果。该器加速管长2.57米,采用分段连接焊成一根整管。文中也给出频率校试的一些结果。从加速器初步调试的结果看,设计基本上是成功的。  相似文献   

18.
医用同源双模中能电子直线加速管是影像引导放射治疗技术(Image Guide Radiation Therapy,IGRT)中的核心部件,为确保放射治疗直线加速器能够提供稳定和高品质的成像射束、双光子模式治疗射束以及多档电子射束,上海联影医疗科技有限公司研制了基于一种新型的能量开关技术的14 Me V医用双模驻波加速管。采用束流动力学程序Parmela对加速管整管的横向聚焦和纵向聚束进行了动力学设计分析,为优化加速管腔体几何结构提供了指标要求,最终利用电磁场仿真软件Superfish及CST(Computer Simulation Technology)优化腔体结构设计并得到了最优的微波参数。模拟计算结果表明,该加速管总长1.3 m,采用边耦合双周期?/2驻波结构,工作频率2.998 GHz,其输出束流能量可以实现多档可调,成像模式可输出低于3 MV的光子,治疗束可输出具有6 MV和10 MV两档的光子及4档能量电子束(最高能量可达14 Me V)。完成加工后,冷测结果与设计值符合得比较好,下一步将进行高功率微波老练。  相似文献   

19.
高能工业CT探测器能谱响应影响校正研究   总被引:1,自引:1,他引:0  
高能X射线工业CT探测器系统的能谱响应是一重要的特性参数。用实验方法测定探测器的能谱响应曲线存在很多困难。本工作利用Monte-Carlo模拟程序计算了CdWO4探测器模块的能谱响应曲线,分析了9MeV驻波电子直线加速器X射线束的能量、剂量角分布以及X射线束能谱硬化对探测器模块探测效率的影响,为线阵探测器系统的一致性校正、非线性校正等提供了理论计算参数,并应用于工业CT图像校正,取得了满意的效果。  相似文献   

20.
文章介绍了合肥国家同步辐射实验室200MeV电子直线加速器大功率波导系统的结构设计。该系统包括波导系统设计、受载分析、力学计算、材料选择、冷却方法、安装技术、真空焊接以及在安装过程中法兰盘的临界调试等。计算结果和特性参数都是满意的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号