首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在能源日趋紧张的形势下,醇基燃料以其特有的可再生性有望成为替代石油的新型能源,但在实际应用过程中问题频发。通过剖析存在的实际问题,提出了发展建议。  相似文献   

2.
3.
生物质基喷气燃料是指全部或大部分来源于生物资源的喷气燃料,符合清洁低碳、安全高效的现代能源体系的要求.以生物质基喷气燃料替代传统石油基喷气燃料有助于我国早日实现"碳达峰、碳中和"的远大目标.在阐述生物质基喷气燃料生产工艺的发展历程及生物质基喷气燃料应用现状的基础上,提出高密度的生物质基喷气燃料是未来喷气燃料的发展方向,...  相似文献   

4.
近日美国Novozymes公司称,由该公司和美国国家再生能源实验室(NREL)合作研究开发的美国能源部(DOE)生物基乙醇燃料项目有重大进展。该项目是美国未来可再生能源战略的重要组成部分,由DOE资助1 480万美元。项目的主要内容是将生物体如玉米茎中的纤维  相似文献   

5.
醇醚燃料     
《油气世界》2006,(2):45-47
甲醇分子量32,含氧量为50%,所要求的空燃比低,只有6.4(汽油为14.8),空燃混合气的热值与汽油热值很接近(2656/2786)。二甲醚分子量46,含氧量均35%,空燃比为其空燃混合气热值比柴油的热值还高(3067/2911)。醇醚燃料空燃比低,所带入空气中的惰性气体氮气大大降低,空燃混合气热值较高,很大程度弥补了燃料本身热值低的弱点,提高了能效,降低了替代比。  相似文献   

6.
7.
介绍了共聚醚醚酮聚合釜的主要技术指标、结构特点、制造试车及市场应用情况。该釜为目前国内开发研制成功的首台示范装置,对共聚醚醚酮行业有着重大意义。  相似文献   

8.
《石油化工应用》2008,27(5):120-120
<正>近日,《M85甲醇汽油》、《车用燃料甲醇》、《民用二甲醚液化石油气》等国家标准已通过审查,并进入公示阶  相似文献   

9.
1 前 言随着航空事业的发展 ,仅用大庆原油生产 3号喷气燃料已不能满足航空事业的发展需要 ,必须开发用多种低硫石蜡基原油生产 3号喷气燃料的技术。高桥石油化工公司炼油厂从 1995年起开展了此项研究工作 ,已确定可生产 3号喷气燃料的多种低硫石蜡基原油有西江、塔比斯、帕兰卡、辛塔、卡宾达、白虎、韦杜里、米纳斯等共 8种原油 ,经国产航空油料鉴定委员会批准已进行大规模生产。为了获得更多的 3号喷气燃料资源 ,本课题开展了以中国渤中、越南陆比、越南阮东、挪威奥赛贝格、安哥拉南巴5种原油生产 3号喷气燃料的试验研究。2 原料油的…  相似文献   

10.
金秋 《石油知识》2004,(1):49-49
常规车用燃料(汽油、柴油)主要来自石油.石油是不可再生的资源。进入新世纪,对汽车的尾气排放提出了更高的限制要求.从而对汽柴油质量也提出了越来越高的质量标准,在车用燃料环保、节能、高效的推动下,一些新型汽车代用燃料应运而生.研发和应用新型汽车代用燃料己成为发展新世纪清洁汽车燃料的一大热点。  相似文献   

11.
甲醇气相催化脱水制二甲醚工艺   总被引:13,自引:0,他引:13  
以甲醇为原料,氧化铝为催化剂,对甲醇气相催化脱水制气雾剂级高纯二甲醚的工艺条件进行了试验研究。结果表明,当反应温度为280~330℃,反应压力为0.8MPa时,甲醇转化率为60%~70%,二甲醚选择性达99%,二甲醚质量分数为99.9%。采用该工艺的一套2000t/a装置已成功运行,生产出合格的产品。  相似文献   

12.
Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME-enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.  相似文献   

13.
二甲醚的制备与下游产品开发研究进展   总被引:4,自引:0,他引:4  
本文介绍了二甲醚(DME)的几种生产方法,包括甲醇脱水法,合成气直接合成法和CO2加氢直接合成法,以及DME合成技术的最新发展情况;同时,本文还对DME下游产品开发研究进展进行了论述。  相似文献   

14.
二甲醚的应用及其下游产品的开发   总被引:18,自引:0,他引:18  
介绍了二甲醚的应用及其下游产品的开发利用情况。二甲醚可由合成气或甲醇制得。二甲醚可用作化工原料、气雾剂、溶剂、甲基化剂、发泡剂、偶联剂、致冷剂和燃料。  相似文献   

15.
气相色谱法测定高纯度二甲醚中的微量甲醇   总被引:2,自引:0,他引:2  
应用气相色谱法,采用PorapakT填充色谱柱、液相直接进样和液相外标、FID检测器,测定了高纯二甲醚(DME)中的微量甲醇,其相对标准偏差<±6%,加标回收率为100.0%~100.2%。方法简便、准确,用于实际样品分析可得到满意结果。  相似文献   

16.
A novel one-step process for co-production of dimethyl ether (DME) and methanol, in the liquid phase, was conceived as an advance over the liquid phase methanol synthesis process (LPMeOHtm). This direct, one-step DME process (LPDMEtm) is based on the application of “dual catalysis”, where 2 functionally different yet compatible catalysts are used as a physical mixture, well-dispersed in the inert liquid phase. Three different reactions, methanol synthesis (via CO and CO2), water-gas shift, and methanol dehydration (to form DME) take place over the 2 catalysts, Cu/ZnO/Al2O3 and typically γ-Al2O3. The thermodynamic and kinetic coupling of methanol dehydration reaction (very fast and at/near thermodynamic equilibrium) with the methanol synthesis reaction (slower kinetics and highly thermodynamic) leads to the observed “chemical synergy”. This synergy helps overcome the limitation on thermodynamic equilibrium conversion, and increases the per-pass syngas conversion and reactor productivity. The catalyst deactivation phenomena in LPDMEtm proess is also greatly alleviated compared to methanol alone; the increase in syngas conversion and methyl equivalent productivity (MEP) are sustained over a longer on-stream time.

Here, in this review, we survey the salient developments in the LPDMEtm process since its inception, first at UA research laboratories and elsewhere including Air Products and Chemicals, Inc. We demonstrate the rationale of the LPDMEtm process, and then outline briefly the research studies in the two processes, that illustrate the chemical synergy in the LPDMEtm process. This successful example of “cooperative catalysis” can be adapted in principle to many other organic reactions.  相似文献   


17.
对典型的甲醇脱水合成二甲醚工艺进行了系统分析,发现了其工艺设计和用能的不合理性,对合成和精馏工艺分别提出了优化设计。流程模拟计算使用PR-NRTL模型,并对实际运行装置进行了标定计算,证明了该模型的准确性和进行流程优化的可靠性。优化流程计算结果与原流程进行对比发现,在满足二甲醚产品质量要求下,蒸汽和冷却水消耗明显减少,冷却水节省了约12.4%,达到了节能优化的目的。  相似文献   

18.
色谱法测定异丁烯中的二甲醚等含氧化合物杂质   总被引:1,自引:1,他引:0  
采用CP-PorabondQPLOT(0 32mm×25m×5μm)毛细管色谱柱对异丁烯中的二甲醚等含氧化合物杂质进行了气相色谱方法研究。结果表明,该色谱柱能很好地分离异丁烯中的二甲醚等含氧化合物杂质;使用液相进样阀液态直接进样保证了试样的代表性。该方法是一种快速、准确、安全地分析异丁烯中二甲醚等含氧化合物杂质的方法。  相似文献   

19.
以正己醇作为引发剂,分别与环氧乙烷和环氧丙烷发生聚合,再以气体三氧化硫进行硫酸化反应,合成了正己醇聚氧乙烯醚硫酸钠(HE3S)以及正己醇聚氧丙烯醚硫酸钠(HP3S)2种阴非离子型表面活性剂。采用FTIR和1H NMR技术对表面活性剂结构进行了表征。通过平衡表面张力、动态表面张力和动态接触角研究了其水溶液的表面活性。实验结果表明,HE3S和HP3S在298 K下的临界胶束浓度分别为58.36 mmol/L和53.84 mmol/L,最低表面张力分别为33.91 m N/m和33.29 m N/m;由动态表面张力计算出的扩散系数,可知两种表面活性剂在水溶液中的吸附机理均属于混合动力控制吸附;当溶液浓度为150 mmol/L时,HE3S和HP3S的水溶液液滴在石蜡膜上可以短时间内快速铺展,其最低接触角分别达到64.5°和55.9°。  相似文献   

20.
In Parts I & II of this Series, we illustrated the process research studies on a new, trendsetting indirect syngas conversion process, the direct, one-step LPDMEtm process, which is now a shining example of “dual catalysis” or “cooperative/adaptive” catalysis and also of thermodynamic/kinetic coupling in series-parallel reactions.

In this part III, we take a look at several processes on the research and pilot scale that employ methanol and DME as chemical feedstocks for further conversion to value-added chemicals. A most rational and cogent argument for the use of DME as a feedstock is that the unit production cost of DME from the direct, one-step DME processes, most notably the LPDMEtm process, can be lower than methanol (from LPMeOHtm), on a methanol-equivalent basis. DME also has inherently more benign physical and chemical properties, contains 1 less mole of water, and results in a substantially similar product distribution, as methanol, for the methanol-to-gasoline (MTG) and methanol-to-olefins (MTO) process. DME can also be converted to several other important chemicals; some of these include dimethoxymethane, dimethoxyethane, methylal, formaldehyde, acetic acid, methyl acetate, and polyoxymethylene ethers. In this report, we offer a critical assessment of the current status of these processes and a projected path to commercialization. Considering the trendsetting and impactful nature of DME as a chemical entity and as a chemical feedstock, along with its “free” cost, we are of the opinion that the future of DME, and of its chemical conversions, as so-called “DME economy”, is very bright.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号