首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endothelial dysfunction, or activation, elicited by oxidized low density lipoprotein (Ox-LDL) and its lipid constituents has been shown to play a key role in the pathogenesis of atherosclerosis. We recently have identified a novel receptor for Ox-LDL-designated lectin-like Ox-LDL receptor (LOX-1) in vascular endothelial cells. To examine ligand specificity of LOX-1, we established CHO cell lines stably expressing both human and bovine LOX-1 (LOX-1-CHO). LOX-1-CHO bound and degraded 125I-labeled Ox-LDL but did not significantly degrade 125I-labeled acetylated LDL (Ac-LDL). Fucoidin and maleylated BSA (M-BSA), which inhibit 125I-Ox-LDL binding to class A scavenger receptors, did not inhibit 125I-Ox-LDL binding or degradation in LOX-1-CHO. Polyinosinic acid and carrageenan, in contrast, significantly reduced 125I-Ox-LDL binding to LOX-1-CHO by 62% and 60%, respectively. Delipidated and untreated 125I-Ox-LDL were bound and degraded equally in LOX-1-CHO; furthermore, excess amounts of unlabeled, delipidated Ox-LDL inhibited binding and degradation of untreated 125I-Ox-LDL. Taken together, LOX-1 is a receptor for Ox-LDL but not for Ac-LDL. LOX-1 recognizes protein moiety of Ox-LDL, and its ligand specificity is distinct from other receptors for Ox-LDL, including class A and B scavenger receptors.  相似文献   

3.
In this review, we summarize the structure and function of the scavenger receptor family of proteins including class A (type I and II macrophage scavenger receptors, MARCO), class B (CD36, scavenger receptor class BI), mucinlike (CD68/macrosialin, dSR-CI) and endothelial (LOX-1) receptors. Two motifs have been identified as ligand-binding domains: a charged collagen structure of type I and II receptors, and an immunodominant domain of CD36. These structures can recognize a wide range of negatively charged macromolecules, including oxidized low-density lipoproteins, damaged or apoptotic cells, and pathogenic microorganisms. After binding, these ligands can be either internalized by endocytosis or phagocytosis, or remain at the cell surface and mediate adhesion or lipid transfer through caveolae. Under physiological conditions, scavenger receptors serve to scavenge or clean up cellular debris and other related materials, and they play a role in host defence. In pathological states, they mediate the recruitment, activation and transformation of macrophages and other cells which may be related to the development of atherosclerosis and to disorders caused by the accumulation of denatured materials, such as Alzheimer's disease.  相似文献   

4.
Mouse and hamster SR-BI glycoproteins and their putative human counterpart CLA-I are so far the only scavenger receptors known to bind both native and modified lipoproteins. CD36, a multigland glycoprotein structurally related to SR-BI and CLA-1, has been reported to bind oxidized low density lipoprotein (OxLDL) and acetylated LDL (AcLDL). In this report, we have studied the ability of CD36 to bind native lipoproteins. By transient expression of human CD36 in mammalian and insect cells, we demonstrate that CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, VLDL, and, as previously reported, for OxLDL and AcLDL. The specificity of these interactions is supported by the dose-dependent inhibiton, effect of a monoclonal antibody against CD36. Furthermore, at least for HDL, binding to CD36 does not require the presence of apoE. These findings, together with preferential expression of CD36 in tissues performing very active fatty acid metabolism (skeletal muscle, heart, mammary epithelium, and adipose tissue) and its involvement in foam cell formation (macrophages), suggest that binding of lipoproteins to CD36 might contribute to the regulation of lipid metabolism, and to the pathogenesis of atherosclerosis.  相似文献   

5.
Hyperglycemia accelerates the formation and accumulation of advanced glycation end products (AGE) in plasma and tissue, which may cause diabetic vascular complications. We recently reported that scavenger receptors expressed by liver endothelial cells (LECs) dominantly mediate the endocytic uptake of AGE proteins from plasma, suggesting its potential role as an eliminating system for AGE proteins in vivo (Smedsrod, B., Melkko, J., Araki, N., Sano, H., and Horiuchi, S. (1997) Biochem. J. 322, 567-573). In the present study we examined the effects of insulin on macrophage scavenger receptor (MSR)-mediated endocytic uptake of AGE proteins. LECs expressing MSR showed an insulin-sensitive increase of endocytic uptake of AGE-bovine serum albumin (AGE-BSA). Next, RAW 264.7 cells expressing a high amount of MSR were overexpressed with human insulin receptor (HIR). Insulin caused a 3.7-fold increase in endocytic uptake of 125I-AGE-BSA by these cells. The effect of insulin was inhibited by wortmannin, a phosphatidylinositol-3-OH kinase (PI3 kinase) inhibitor. To examine at a molecular level the relationship between insulin signal and MSR function, Chinese hamster ovary (CHO) cells expressing a negligible level of MSR were cotransfected with both MSR and HIR. Insulin caused a 1.7-fold increase in the endocytic degradation of 125I-AGE-BSA by these cells, the effect of which was also inhibited by wortmannin and LY294002, another PI3 kinase inhibitor. Transfection of CHO cells overexpressing MSR with two HIR mutants, a kinase-deficient mutant, and another lacking the binding site for insulin receptor substrates (IRS) resulted in disappearance of the stimulatory effect of insulin on endocytic uptake of AGE proteins. The present results indicate that insulin may accelerate MSR-mediated endocytic uptake of AGE proteins through an IRS/PI3 kinase pathway.  相似文献   

6.
A high concentration of oxidized low density lipoprotein (Ox-LDL) showed a cytotoxic effect on mouse macrophage-derived J774 cells. Mutant cells were selected from these cells that were resistant to the cytotoxic effect of Ox-LDL. One mutant form, named JO21b cells, was characterized in the present study. In spite of a marked resistance to the cytotoxic effect of Ox-LDL, JO21b cells were apparently as sensitive as the parent cells not only to toxic moieties of Ox-LDL, such as 7-ketocholesterol and lysophosphatidylcholine, but also to t-butyl hydroperoxide, an artificial lipid hydroperoxide analog. However, the cellular association of 125I-labeled Ox-LDL with, and subsequent endocytic degradation by JO21b cells was reduced by 70-80% compared with J774 cells. Similarly, accumulation of cholesteryl esters in JO21b cell by Ox-LDL was also reduced by 70%. Northern blot analyses of type I and type II macrophage scavenger receptors (type I and type II MSR) demonstrated that the mRNA levels of JO21b cells were lower than those of J774 cells. Moreover, peritoneal macrophages obtained from MSR-knockout mice showed a higher resistance to the cytotoxic effect of Ox-LDL than those from their wild-type littermates. Our results suggest, therefore, that macrophage scavenger receptor-mediated endocytic uptake of oxidized low density lipoproteins (Ox-LDL) may play an enhancing role in Ox-LDL cytotoxicity to macrophages or macrophage-derived cells.  相似文献   

7.
Natural killer (NK) cells take up chylomicrons (CM), very low density (VLDL), low density (LDL), high density (HDL) and acetyl-modified low density (AcLDL) lipoproteins through different receptors, VLDL being the lipoprotein with the highest uptake and HDL the lowest. The uptake of LDL can be selectively blocked by the anti-LDL receptor, which does not affect the uptake of CM, VLDL, HDL and AcLDL. Although the uptake of lipoproteins assessed by flow cytometry using DiI is not very high, the lipoproteins are able to induce an increase in proliferative responses, VLDL, AcLDL and HDL being the most important ones with 12- and 17-fold increments, respectively. CM, VLDL and LDL at low concentrations increase NK cytotoxic activity, while HDL and AcLDL inhibit, in a dose-dependent fashion, the killing of NK cells against K562. These results suggest the presence of four different receptors that are responsible for the cytotoxic and proliferative responses observed.  相似文献   

8.
The recently isolated peptides endomorphin-1 and endomorphin-2 have been suggested to be the endogenous ligands for the mu receptor. In traditional opioid receptor binding assays in mouse brain homogenates, both endomorphin-1 and endomorphin-2 competed both mu1 and mu2 receptor sites quite potently. Neither compound had appreciable affinity for either delta or kappa1 receptors, confirming an earlier report. However, the two endomorphins displayed reasonable affinities for kappa3 binding sites, with Ki values between 20 and 30 nM. Both endomorphins competed 3H-[D-Ala2, MePhe4,Gly(ol)5] enkephalin binding to MOR-1 receptors expressed in CHO cells with high affinity. In mouse brain homogenates 125I-endomorphin-1 and 125I-endomorphin-2 binding was selectively competed by mu ligands. 125I-Endomorphin-1 and 125I-endomorphin-2 also labeled MOR-1 receptors expressed in CHO cells with high affinity. Autoradiography of the two 125I-labeled endomorphins demonstrated regional patterns in the brain similar to those previously observed for mu drugs. Pharmacologically, the endomorphins were potent analgesics. Although they were equipotent supraspinally, endomorphin-1 was more potent spinally. Endomorphin analgesia was effectively blocked by naloxone, as well as the mu-selective antagonists beta-funaltrexamine and naloxonazine. In CXBK mice, which are insensitive to supraspinal morphine, neither endomorphin was active, consistent with a mu mechanism of action. Finally, the endomorphins inhibited gastrointestinal transit. In conclusion, these results support the mu selectivity of these agents.  相似文献   

9.
ApoE is a ligand for the low density lipoprotein (LDL) receptor as well as for the LDL receptor-related protein (LRP). The enzyme hepatic lipase (HL) may also affect the uptake of lipoproteins by modifying their composition. We have tested the hypothesis that hepatic lipase and apoE can function as co-factors to alter the rate of lipoprotein uptake. Chinese hamster ovary (CHO) cells were transfected with cDNAs for rat hepatic lipase, human apoE or both HL and apoE. The secreted recombinant proteins were thoroughly characterized and had properties identical to the native proteins. Hepatic lipase and apoE were secreted at 0.17 and 1.25 micrograms/mg cell protein per hour, rates comparable to those in normal liver. 125I-labeled LDL, chylomicron remnants, or chylomicrons were added to media at concentrations near their Kd. In cells that secreted either apoE or hepatic lipase, or both apoE and hepatic lipase, LDL binding was significantly greater than with control cells (2.2-, 2-, 2-fold greater, respectively). Similar enhancement of LDL degradation was observed. In the presence of anti-LDL receptor antibodies, these values were reduced to control levels; thus, the enhanced uptake was mediated by the LDL receptor and not the LRP. The amount of LDL receptor protein, as judged by Western blotting, was similar in the various cell types. Incubation of control CHO cells with media from secreting transfected cells also increased the uptake of 125I-labeled LDL. Kinetic studies indicated that, in apoE-secreting cells, increased LDL binding is associated with a lower Kd and an unchanged Vmax as compared to the control cells; furthermore, when LDL were reisolated by column chromatography (but not by ultracentrifugation) from the incubations where apoE was being secreted, apoE was identified adherent to the LDL particles. Together, these results suggest that the effect is due to alteration of the lipoprotein and not the cell. In contrast, the uptake of 125I-labeled chylomicron remnants, and 125I-labeled chylomicrons was not greater in the transfected cells. Thus, in the amounts secreted by these cells, hepatic lipase and apoE do not convert chylomicrons to chylomicron remnants or alter the uptake of chylomicron remnants by either the LDL receptor or the LRP. The enhancement of LDL removal in cells that secrete hepatic lipase or apoE may help determine the amount of LDL removed by a particular tissue.  相似文献   

10.
Lipopolysaccharide (LPS) is cleared from the blood mainly by the liver. The Kupffer cells are primarily responsible for this clearance; liver endothelial and parenchymal cells contribute to a lesser extent. Although several binding sites have been described, only CD14 is known to be involved in LPS signalling. Among the other LPS binding sites that have been identified are scavenger receptors. Scavenger receptor class A (SR-A) types I and II are expressed in the liver on endothelial cells and Kupffer cells, and a 95-kDa receptor, identified as macrosialin, is expressed on Kupffer cells. In this study, we examined the role of scavenger receptors in the binding of LPS by the liver in vivo and in vitro. Fucoidin, a scavenger receptor ligand, significantly reduced the clearance of 125I-LPS from the serum and decreased the liver uptake of 125I-LPS about 40%. Within the liver, the in vivo binding of 125I-LPS to Kupffer and liver endothelial cells was decreased 72 and 71%, respectively, while the binding of 125I-LPS to liver parenchymal cells increased 34% upon fucoidin preinjection. Poly(I) inhibited the binding of 125I-LPS to Kupffer and endothelial cells in vitro 73 and 78%, respectively, while poly(A) had no effect. LPS inhibited the binding of acetylated low-density lipoprotein (acLDL) to Kupffer and liver endothelial cells 40 and 55%, respectively, and the binding of oxidized LDL (oxLDL) to Kupffer and liver endothelial cells 65 and 61%, respectively. oxLDL and acLDL did not significantly inhibit the binding of LPS to these cells. We conclude that on both endothelial cells and Kupffer cells, LPS binds mainly to scavenger receptors, but SR-A and macrosialin contribute to a limited extent to the binding of LPS.  相似文献   

11.
The macrophage mannose receptor mediates the clearance of microorganisms and glycoproteins containing terminal mannose oligosaccharides. Cell surface expression of this receptor progresses with macrophage differentiation, and thus may be critical to the scavenger function of tissue and circulating macrophages. Bone marrow macrophages, which were used in this study, differentiate in culture and express functional mannose receptors. The cytokine IFN-gamma triggered activation of these macrophages and down-regulated cell surface expression of the mannose receptor after 48 h. Macrophage activation, as assessed by the generation of superoxide radicals, was inversely correlated with mannose receptor expression. The number of surface receptors was diminished by exposure to IFN-gamma, whereas the binding affinity of the mannose receptor remained unchanged. Treatment with IFN-gamma reduced receptor biosynthesis yet did not alter receptor degradation. Mannose receptor biosynthesis is up-regulated by PG of the E series, and these anti-inflammatory agents reversed the effects of IFN-gamma on receptor expression. Down-regulation of the mannose receptor by IFN-gamma was fully reversible by PGE, indicating that receptor levels are dependent on the functional state of the cell rather than being linked to terminal cell differentiation. The regulation of the receptor by cytokines and anti-inflammatory reagents suggests that the mannose receptor plays a critical role in macrophage scavenger functions and potentially in modulating inflammatory reactions.  相似文献   

12.
Bovine milk lipoprotein lipase (LPL) induced binding, uptake, and degradation of 125I-labeled normal human triglyceride-rich lipoproteins by cultured mutant fibroblasts lacking LDL receptors. The induction was dose-dependent and occurred whether LPL and 125I-lipoproteins were added to incubation media simultaneously or LPL was allowed to bind to cell surfaces, and unbound LPL was removed by washing prior to the assay. Lipolytic modification of lipoproteins did not appear to be necessary for increased catabolism because the effect of LPL was not prevented by inhibitors of LPL's enzymatic activity, p-nitrophenyl N-dodecylcarbamate or phenylmethylsulfonyl fluoride. However, the effect was abolished by boiling LPL prior to the assay suggesting that major structural features of LPL were required. Also, LPL-induced binding to cells was blocked by an anti-LPL monoclonal antibody but not by antibodies that are known to block apolipoprotein E- or B-100-mediated binding to low density lipoprotein (LDL) receptors. This indicates that LPL itself mediated 125I-lipoprotein binding to cells. Cellular degradation of 125I-lipoproteins was partially or completely blocked by two previously described ligands for the LDL receptor-related protein/alpha 2-macroglobulin receptor (LRP): activated alpha 2-macroglobulin (alpha 2M*), and the 39-kDa receptor-associated protein. These data implicated LRP as mediating LPL-induced lipoprotein degradation and were confirmed by showing that LPL's effects were prevented by an immunoaffinity-isolated polyclonal antibody against LRP. Furthermore, LPL promoted binding of 125I-lipoproteins to highly purified LRP in a solid-phase assay. Heparin or heparinase treatment of cells markedly decreased LPL-induced binding, uptake, and degradation of lipoproteins, but had no effect on catabolism of alpha 2M*. Thus, cell-surface proteoglycans were obligatory participants in the effects of LPL but were not required for LRP-mediated catabolism of alpha 2M*. Taken together, these in vitro findings establish that through interaction with cell-surface proteoglycans, LPL induces catabolism of normal human triglyceride-rich lipoproteins via LRP.  相似文献   

13.
Lipoprotein metabolism is regulated by the functional interplay between lipoprotein components and the receptors and enzymes with which they interact. Recent evidence indicates that the structurally related glycoproteins CD36 and SR-BI act as cell surface receptors for some lipoproteins. Thus, CD36 has been reported to bind oxidized LDL (OxLDL) and acetylated LDL (AcLDL), while SR-BI also binds native LDL and HDL. The cDNA of human CLA-1 predicts a protein 509 amino acids long that displays a 30% and an 80% amino acid identity with CD36 and mouse or hamster SR-BI, respectively. In this report, we describe the structural characterization of CLA-1 as an 85-kD plasma membrane protein enriched in N-linked carbohydrates. The expression of CLA-1 on mammalian and insect cells has been used to demonstrate that CLA-1 is a high-affinity specific receptor for the lipoproteins HDL, LDL, VLDL, OxLDL, and AcLDL. Northern blot analysis of the tissue distribution of CLA-1 in humans indicated that its expression is mostly restricted to tissues performing very active cholesterol metabolism (liver and steroidogenic tissues). This finding, in the context of the capability of this receptor to bind to both native and modified lipoproteins, strongly suggests that the CLA-1 receptor contributes to lipid metabolism and atherogenesis.  相似文献   

14.
Macrophage scavenger receptors are trimeric integral membrane proteins that bind a diverse array of negatively charged ligands. They have been shown to play a role in the pathogenesis of atherosclerosis and in host responses to microbial infections. Earlier mutational studies demonstrated that the distal segment of the collagen domain of the receptor was critically important for high affinity ligand binding activity. In this study, mutations spanning the entire collagen domain were generated and binding was assayed in transfected cells, as well as in assays employing a secreted, receptor fusion protein. Many of the distal, positively charged C-terminal residues in the type II collagen domain of the receptor, previously reported to be essential for binding at 37 degreesC, were found not to be critical for binding at 4 degreesC. Conversely, more proximally charged residues of the collagen receptor that have not been previously mutated were shown to have substantial effects on binding that were also temperature-dependent. These data suggest that scavenger receptor ligand recognition depends on more complex conformational interactions, involving charged residues throughout the entire collagen domain, than was previously recognized.  相似文献   

15.
Long-term incubation of proteins with glucose leads to advanced glycation end products (AGEs) with fluorescence and a brown color. We recently demonstrated immunologically the intracellular AGE accumulation in smooth muscle cell (SMC)-derived foam cells in advanced atherosclerotic lesions. To understand the mechanism of AGE accumulation in these foam cells, we have now characterized the interaction of AGE proteins with rabbit-cultured arterial SMCs. In experiments at 4 degrees C, 125I-labeled AGE-bovine serum albumin (AGE-BSA) showed a dose-dependent saturable binding to SMCs with an apparent dissociation constant (Kd) of 4.0 microg/ml. In experiments at 37 degrees C, AGE-BSA underwent receptor-mediated endocytosis and subsequent lysosomal degradation. The endocytic uptake of 125I-AGE-BSA was effectively inhibited by unlabeled AGE proteins such as AGE-BSA and AGE-hemoglobin, but not by acetylated LDL and oxidized LDL, well-known ligands for the macrophage scavenger receptor (MSR). Moreover, the binding of 125I-AGE-BSA to SMCs was affected neither by amphoterin, a ligand for one type of the AGE receptor, named RAGE, nor by 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole-hexanoic acid-BSA, a ligand for the other AGE receptors, p60 and p90. This indicates that the endocytic uptake of AGE proteins by SMCs is mediated by an AGE receptor distinct from MSR, RAGE, p60, and p90. To examine the functional role of this AGE receptor, the migratory effects of AGE-BSA on these SMCs were tested. Incubation with 1-50 microg/ml of AGE-BSA for 14 h resulted in significant dose-dependent cell migration. The AGE-BSA-induced SMC migration was chemotactic in nature and was significantly inhibited (approximately 80%) by an antibody against transforming growth factor-beta (TGF-beta), and the amount of TGF-beta secreted into the culture medium from SMC by AGE-BSA was sevenfold higher than that of control, indicating that TGF-beta is involved in the AGE-induced SMC chemotaxis. These data suggest that AGE may play a role in SMC migration in advanced atherosclerotic lesions.  相似文献   

16.
The cellular uptake of liposomes is generally believed to be mediated by adsorption of liposomes onto the cell surface and subsequent endocytosis. This report examines the effect of liposome surface charge on liposomal binding and endocytosis in two different cell lines: a human ovarian carcinoma cell line (HeLa) and a murine derived mononuclear macrophage cell line (J774). The large unilamellar liposomes were composed of 1, 2-dioleolyl-sn-glycero-3-phosphatidylcholine with and without the addition of either a positively charged lipid, 1, 2-dioleoyl-3-dimethylammonium propanediol (DODAP), or a negatively charged lipid, 1,2-dioleolyl-sn-glycero-3-phosphatidylserine. In some experiments 5 mol % of the anionic PEG2000-PE or a neutral PEG lipid of the same molecular weight was added. HeLa cells were found to endocytose positively charged liposomes to a greater extent than either neutral or negatively charged liposomes. This preference was not lipid-specific since inclusion of a cationic cyanine dye, DiIC18(3), to impart positive charge in place of DODAP resulted in a similar extent of endocytosis. In contrast the extent of liposome interaction with J774 cells was greater for both cationic and anionic liposomes than for neutral liposomes. The greater uptake of positively charged liposomes by HeLa cells was also observed with sterically stabilized liposomes (PEG liposomes). Although the overall amount of endocytosis for all the PEG liposomes examined was attenuated relative to conventional liposomes, the extent of endocytosis was greatest for positively charged PEG liposomes, whereas negatively charged PEG2000-PE liposomes were hardly endocytosed by the HeLa cells. Incorporation of a neutral PEG lipid into liposomes permits the independent variation of liposome steric and electrostatic effects in a manner that may allow interactions with cells of the reticuloendothelial system to be minimized, yet permit strong interactions between liposomes and proliferating cells.  相似文献   

17.
The role of heparin or heparan sulfates in the interaction of basic fibroblast growth factor (bFGF) with its high affinity receptor were investigated using purified extracellular ligand-binding region of FGF receptor-1 (FGFR-1) and intact receptors expressed in a myeloid cell line (32D) that does not express detectable levels of heparan sulfate proteoglycans or in Chinese hamster ovary (CHO) cell mutants defective in heparan sulfate synthesis. The purified extracellular domain of FGFR-1 formed complexes with 125I-bFGF both in the presence or absence of heparin. Intact FGFR-1 expressed in 32D cells also bound the same amount of 125I-bFGF in the presence or absence of heparin when saturating concentrations of bFGF were used. Varying the concentration of 125I-bFGF showed that heparin increased the amount of 125I-bFGF bound at low bFGF concentrations and increased the affinity of bFGF for its receptor by about 3-fold. To eliminate the possibility of alteration of bFGF properties through the chemical modification reactions, bFGF was labeled biosynthetically. The binding of biosynthetically labeled bFGF to FGFR-1 also did not require heparin. When FGFR-1 or FGFR-2 were expressed in mutant CHO cells deficient in heparan sulfate synthesis, the cells also bound 125I-bFGF in the absence of heparin, and the addition of heparin increased the affinity of bFGF for its receptors 2-3-fold. Thus, heparin or heparan sulfate is not required for the binding of bFGF to its receptors but increases the binding affinity to a moderate degree. Finally, the requirement for heparin in signal transduction through the receptor was investigated. Expression of c-fos mRNA was induced by bFGF in 32D cells expressing FGFR-1 to the same extent in the presence or absence of heparin.  相似文献   

18.
We have examined epidermal growth factor (EGF) signalling in a CHO cell line (CHO11) which expresses a human EGF receptor truncated at amino acid 990. Previous studies showed that EGF treatment of these cells failed to increase prostaglandin production or phospholipase A2 activity. In the current study EGF increased the tyrosine phosphorylation of the intracellular signalling protein Shc in CHO11 cells but did not activate either of the downstream signalling enzymes raf or mitogen activated protein kinase (MAPK). The uncoupling of Shc activation from distal signalling in CHO11 cells contrasts with other cells which express similar mutant EGF receptors. The failure of She to activate distal signalling may reflect qualitative differences in the way that this protein is activated or could result from the activation of an inhibitory signalling pathway.  相似文献   

19.
We investigated cell proliferation modulated by cholecystokinin (CCK) and somatostatin analogue RC-160 in CHO cells bearing endogenous CCKA receptors and stably transfected by human subtype sst5 somatostatin receptor. CCK stimulated cell proliferation of CHO cells. This effect was suppressed by inhibitor of the soluble guanylate cyclase, LY 83583, the inhibitor of the cGMP dependent kinases, KT 5823, and the inhibitor of mitogen-activated protein (MAP) kinase kinase, PD 98059. CCK treatment induced an increase of intracellular cGMP concentrations, but concomitant addition of LY 83583 virtually suppressed this increase. CCK also activated both phosphorylation and activity of p42-MAP kinase; these effects were inhibited by KT 5823. All the effects of CCK depended on a pertussis toxin-dependent G protein. Somatostatin analogue RC-160 inhibited CCK-induced stimulation of cell proliferation but it did not potentiate the suppressive effect of the inhibitors LY 83583 and KT 5823. RC-160 inhibited both CCK-induced intracellular cGMP formation as well as activation of p42-MAP kinase phosphorylation and activity. This inhibitory effect was observed at doses of RC-160 similar to those necessary to occupy the sst5 recombinant receptor and to inhibit CCK-induced cell proliferation. We conclude that, in CHO cells, the proliferation and the MAP kinase signaling cascade depend on a cGMP-dependent pathway. These effects are positively regulated by CCK and negatively influenced by RC-160, interacting through CCKA and sst5 receptors, respectively. These studies provide a characterization of the antiproliferative signal mediated by sst5 receptor.  相似文献   

20.
Rhodopsin receptor activation involves the disruption of a salt bridge constraint between glutamic acid 113 on transmembrane 3 and a lysine 296 in transmembrane 7, which forms a Schiff's base with retinal. Light-induced isomerization of cis-retinal to the all trans form breaks this rhodopsin salt bridge leading to receptor activation. The analogous residues in alpha1b-adrenergic receptors, aspartic acid 125 and lysine 331, also have the potential of forming a constraining salt bridge holding the receptor to an inactive protein configuration. This alpha1b-adrenergic receptor salt bridge constraint is then released upon binding by the receptor agonist. To test this hypothesis, site-directed mutagenesis was used to eliminate the positive charge at position 331 by substitution of an alanine. The expressed alpha1b-adrenergic receptor mutant demonstrated a 6-fold increased epinephrine binding affinity with no alterations of affinity values for selective adrenergic receptor antagonists. Furthermore, an increased epinephrine potency for total soluble inositol phosphate production along with an elevated basal inositol triphosphate level was observed in COS-1 cells transfected with mutant versus wild-type alpha1b-adrenergic receptors. Similar results were obtained for a lysine to a glutamic acid alpha1b-adrenergic receptor mutation. In addition, increased basal inositol triphosphate levels were also observed for two aspartic acid 125 alpha1b-adrenergic receptor mutations, consistent with this residue's role as the counterion of the salt bridge. Taken together, these alpha1b-adrenergic receptor mutations suggest a molecular mechanism by which the positively charged lysine 331 stabilizes the negatively charged aspartic acid 125 via a salt bridge constraint until bound by the receptor agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号