首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal properties and non‐isothermal melt‐crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(lactic acid) (PLA) blends were investigated using differential scanning calorimetry and thermogravimetric analysis. The blends exhibit single and composition‐dependent glass transition temperature, cold crystallization temperature (Tcc) and melt crystallization peak temperature (Tmc) over the entire composition range, implying miscibility between the PLA and PTT components. The Tcc values of PTT/PLA blends increase, while the Tmc values decrease with increasing PLA content, suggesting that the cold crystallization and melt crystallization of PTT are retarded by the addition of PLA. The modified Avrami model is satisfactory in describing the non‐isothermal melt crystallization of the blends, whereas the Ozawa method is not applicable to the blends. The estimated Avrami exponent of the PTT/PLA blends ranges from 3.25 to 4.11, implying that the non‐isothermal crystallization follows a spherulitic‐like crystal growth combined with a complicated growth form. The PTT/PLA blends generally exhibit inferior crystallization rate and superior activation energy compared to pure PTT at the same cooling rate. The greater the PLA content in the PTT/PLA blends, the lower the crystallization rate and the higher the activation energy. Moreover, the introduction of PTT into PLA leads to an increase in the thermal stability behavior of the resulting PTT/PLA blends. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The non‐isothermal and isothermal crystallizations of extruded poly(l ‐lactic acid) (PLLA) blends with 10, 20 and 30 wt% poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry. The formation of α‐form crystals in the blend films was verified using X‐ray diffraction and an increase in crystallinity indexes using Fourier transformation infrared spectroscopy. Crystallization and melting temperatures and crystallinity of PLLA increased with decreasing cooling rate (CR) and showed higher values for the blends. Although PLLA crystallized during both cooling and heating, after incorporation of PEG and with CR = 2 °C min?1 its crystallization was completed during cooling. Increasingly distinct with CR, a small peak appeared on the lower temperature flank of the PLLA melting curve in the blends. A three‐dimensional nucleation process with increasing contribution from nuclei growth at higher CR was verified from Avrami analysis, whereas Kissinger's method showed that the diluent effect of 10 and 20 wt% PEG in PLLA decreased the effective energy barrier. During isothermal crystallization, crystallization half‐time increased with temperature (Tic) for the blends, decreased with PEG content and was lower than that of pure PLLA. In addition, the Avrami rate constants were significantly higher than those of pure PLLA, at the lower Tic. Different crystal morphologies in the PLLA phase were formed, melting in a broader and slightly higher Tm range than pure PLLA. The crystallization activation energy of PLLA decreased by 56% after the addition of 10 wt% PEG, increasing though with PEG content. Finally, PEG/PLLA blends presented improved flexibility and hydrophilicity. © 2019 Society of Chemical Industry  相似文献   

4.
Poly(trimethylene terephthalate) (PTT)/cellulose acetate butyrate (CAB) blends were prepared by melting blending through a co‐rotating twin screw extruder. The structures of PTT/CAB blends were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectra, and the results showed that CAB phase dispersed homogeneously in the PTT matrix and there existed evident phase interface between PTT and CAB. The nonisothermal crystallization behavior was investigated by differential scanning calorimetry (DSC) and was described with modified Avrami equation of Jeziorny and Mo equation, respectively. The results indicated that the half crystallization time (t1/ 2) is much shorter, the nonisothermal crystallization kinetic rate constant (Zc) is bigger at a given cooling rate, the cooling rate [Fz(T)] is smaller at a given relative crystallinity (X t) of PTT/CAB blends than those of PTT, which proved that the addition of CAB improved the crystallization of PTT and made PTT crystallize more perfect and faster than pure PTT. In addition, thermogravimetric analysis (TGA) curves of PTT and PTT/CAB blends showed that effects of CAB content on the thermal decomposition of PTT/CAB blends were little. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Thermal analysis of solution precipitated blends of two crystallizable polymers, poly(vinylidene fluoride) (PVDF) and copoly(chlorotrifluorethylene-vinylidene fluoride) (copoly(CTFE-VDF)), has been carried out to study the transition temperatures, crystallinity, and crystallization rates. PVDF crystallizes over the whole blend composition either during precipitation from solution or upon cooling from the melt. The high degree of crystallinity attained, higher than in PVDF by itself, suggests the occurrence of partial PVDF-copolymer cocrystallization. The melt crystallization temperature, decreasing with cooling rate, is lower in PVDF-rich blends than for lean blends. However, the heat of crystallization increases with cooling rate, suggesting that the crystal composition depends on crystallization rate. No significant melting temperature depression due to blending was observed. However, the blends glass transition (Tg) changes linearly with composition, but less than expected by any mixing rule applicable to compatible systems. Annealing of the blends above Tg results in an additional crystalline phase consisting mainly of the copolymer. The amount of these crystals increases with PVDF content, due to partial cocrystallization and kinetic effects. The addition of the copolymer to PVDF results in a volume-filling spherulitic structure consisting of spherulites which decrease in size with increasing copolymer content.  相似文献   

6.
The crystallization kinetics of a melt‐miscible blend, consisting of poly(trimethylene terephthalate) (PTT) and poly(ether imide) (PEI) prepared by solution precipitation, has been investigated by means of optical polarized microscopy and differential scanning calorimeter. It was found that both the PTT spherulitic growth rate (G) and overall crystallization rate constant (kn) were depressed, with increasing PEI composition or crystallization temperature (Tc). The kinetic retardation was attributed to the decrease in PTT molecular mobility, and the dilution of PTT concentration due to the addition of PEI, which has a higher glass transition temperature (Tg). According to the Lauritzen–Hoffman theory of secondary nucleation, the crystallization of PTT in blends was similar to that of neat PTT as regime III, n = 4 and regime II, n = 2 growth processes, while the transition point of regime III to II has been shifted from 194°C for neat PTT to 190°C for blends. POLYM. ENG. SCI. 46:89–96, 2006. © 2005 Society of Plastics Engineers  相似文献   

7.
聚乳酸/聚乙二醇共混物的结晶与降解行为   总被引:1,自引:0,他引:1       下载免费PDF全文
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。  相似文献   

8.
Poly(trimethylene terephthalate) (PTT)/polycarbonate (PC) blends with different compositions were prepared by melt blending. The miscibility and phase behavior of melt-quenched and cold-crystallized blends were studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy. The blends of all compositions display only one glass transition (T g ) in both states. The melting temperature and the crystallinity of PTT in the blend decrease with increasing PC content. The dielectric results for the melt-quenched blends, for PC content up to 60 wt.%, exhibited two merged relaxation peaks during the heating scan; the lower temperature relaxation peak represent the normal glass-transition (α) relaxation of the mixed amorphous phase and the higher temperature relaxation due to the new-constrained mixed amorphous phase after crystallization. Cold-crystallized blends displayed only one glass transition α-relaxation whose temperatures varied with composition in manner similar to that observed by DSC. The dielectric α-relaxation of cold crystallized blends has been analyzed. Parameters relating to relaxation broadening, dielectric relaxation strength, and activation energy were quantified and were found to be composition dependent. The PTT/PC blends could be considered as two-phase system, a crystalline PTT phase and a mixed amorphous phase consisting of a miscible mixture of the two polymers. However, the crystallinity was only detected for blends containing greater than 40 wt.% PTT.  相似文献   

9.
Crystallization and melting behaviors of poly(trimethylene terephthalate)   总被引:3,自引:0,他引:3  
The crystallization and melting behaviors of poly(trimethylene terephthalate) (PTT) have been studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and solid-state NMR. At certain crystallization temperatures (Tc) for a given time, the isothermally crystallized PTT exhibits two melting endotherms, which is similar to that of PET and PBT. At higher crystallization temperature (Tc = 210 °C), the low-temperature endotherm is related to the melting of the original crystals, while the high-temperature endotherm is associated with the melting of crystals recrystallized during the heating. The peak temperatures of these double-melting endotherms depend on crystallization temperature, crystallization time, and cooling rate from the melt as well as the subsequent heating rate. At a low cooling rate (0.2 °C/min) or a high heating rate (40 °C/min), these two endotherms tend to coalesce into a single endotherm, which is considered as complete melting without reorganization. WAXD results confirm that only one crystal structure exists in the PTT sample regardless of the crystallization conditions even with the appearance of double melting endotherms. The results of NMR reveal that the annealing treatment increases proton spin lattice relaxation time in the rotation frame, T H, of the PTT. This phenomenon suggests that the mobility of the PTT molecules decreases after the annealing process. The equilibrium melting temperature (T m o ) determined by the Hoffman-Weeks plot is 248 °C.  相似文献   

10.
BACKGROUND: The thermal behaviour of poly(lactic acid) (PLA) in contact with compressed CO2 was studied using high‐pressure differential scanning calorimetry. In particular, the effect of annealing below and above the glass transition temperature (Tg) on the glass transition, cold crystallization and melting temperatures was studied systematically as a function of annealing time and pressure. RESULTS: The effect of compressed CO2 on the thermal properties of PLA is time dependent. Annealing below Tg decreases the temperature and enthalpy of cold crystallization. Similar, but more evident, behaviours are observed when annealing above Tg. Crystallization temperature and enthalpy during cooling decrease with increasing pressure, and the peak is narrower. CONCLUSION: Annealing PLA in the presence of compressed CO2 accelerates cold crystallization, but retards crystallization during cooling. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The miscibility of poly(vinylalcohol-co-ethylene) (PEVA) with poly(ethylene-alt-maleic anhydride) (PEMAH) blends was investigated over a wide range of compositions by viscosimetry and DSC analyses using Krigbaum–Wall and Kwei approaches. The results revealed that the blends were completely miscible in all proportions due to the specific interactions between the hydroxyl groups of PEVA and the carbonyl groups of PEMAH. From Nishi equation, the interaction parameter of Flory was found to be −0.89. The nonisothermal crystallization behavior and kinetics of this system were also investigated and compared with those of the pure PEVA. There were strong dependencies of the degree of crystallinity (XT), peak crystallization temperature (Tp), half time of crystallization (t1/2), and Ozawa exponent (m) on PEMAH content and cooling rate. The crystallization activation energy (Ec) that was calculated from Kissinger model increased with increasing PEMAH composition in the blend. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The effects of crystalline and orientational memory phenomena on the subsequent isothermal crystallization and subsequent melting behavior of poly(trimethylene terephthalate) (PTT) were investigated by studying the effect of prior melt‐annealing temperature, Tf, on the subsequent isothermal crystallization kinetics, crystalline structure and subsequent melting behavior of neat and sheared PTT samples. On partial melting, choices of the Tf used to melt the samples played an important role in determining their bulk crystallization rates, in which the bulk crystallization rate parameters studied were all found to decrease monotonically with increasing Tf. The decrease in the values of these rate parameters with Tf continued up to a critical Tf value (ie ca 275 °C for neat PTT samples and ca 280 °C for PTT samples which were sheared at shear rates of 92.1 and 245.6 s?1). Choices of the Tf used to melt neat PTT samples had no effect on the crystal structure formed. The subsequent melting behavior suggested that the Tf used to melt both neat and sheared samples had no effect on the peak positions of the melting endotherms observed and that the observed peak values of these endotherms for all sample types studied were almost identical. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
The melting, crystallization behaviors, and nonisothermal crystallization kinetics of the ternary blends composed of poly(ethylene terephthalate), poly(trimethylene terephthalate) (PTT) and poly(buthylene terephthalate) (PBT) were studied with differential scanning calorimeter (DSC). PBT content in all ternary blends was settled invariably to be one‐third, which improved the melt‐crystallization temperature of the ternary blends. All of the blend compositions in amorphous state were miscible as evidenced by a single, composition‐dependent glass transition temperature (Tg) observed in DSC curves. DSC melting thermograms of different blends showed different multiple melting and crystallization peaks because of their various polymer contents. During melt‐crystallization process, three components in blends crystallized simultaneously to form mixed crystals or separated crystals depending upon their content ratio. The Avrami equation modified by Jeziorny and the Ozawa theory were employed to describe the nonisothermal crystallization process of two selected ternary blends. The results spoke that the Avrami equation was successful in describing the nonisothermal crystallization process of the ternary blends. The values of the t1/2 and the parameters Zc showed that the crystallization rate of the ternary blends with more poly(ethylene terephthalate) content was faster than that with the lesser one at a given cooling rate. The crystal morphology of the five ternary blends investigated by polarized optical microscopy (POM) showed different size and distortional Maltese crosses or light spots when the PTT or poly(ethylene terephthalate) component varied, suggesting that the more the PTT content, the larger crystallites formed in ternary blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Poly(lactic acid) (PLA) and NPK fertilizer with empty fruit bunch (EFB) fibers were blends to produced bioplastic fertlizer (BpF) composites for slow release fertilizer. Thermal properties of BpF composites were investigated by thermogavimteric analysis (TGA), differential scanning calorimetry (DSC), and morphological and degradation properties were anlayzed by scanning electron microscopy (SEM), soil burial test, respectively. TGA themogram display that neat PLA, PLA/NPK, and BpF composites degradate at different temperatures. DSC curves of PLA and other composites exhibited same glass transition temperature (Tg) value indicating that both major blend components are miscible. The Tg, crystallization temperature (Tc), melting temperature (Tm) values also decreased with increased amount of fertilizer and fibers. The Tm of BpF composites did not change with an increase in fertilizer content because thermal stability of PLA and PLA/NPK composites was not affected. Soil burial and fungal degradation test of PLA, PLA/NPK, and BpF composites were also carried out. Soil burial studies indicated that BpF composites display better biodegradation as compared with neat NPK. Fungal degradation study indicated that fungi exposure times of BpF composites show higher value of degradation as compared with PLA/NPK. We attribute that developed BpF composites will help oil palm plantation industry to use it as slow release fertilizer. POLYM. COMPOS. 36:576–583, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998  相似文献   

16.
The crystallization kinetics of pure poly(ε‐caprolactone) (PCL) and its blends with bisphenol‐A tetramethyl polycarbonate (TMPC) was investigated isothermally as a function of composition and crystallization temperature (Tc) using differential scanning calorimetric (DSC) and polarized optical microscope techniques. Only a single glass‐transition temperature, Tg, was determined for each mixture indicating that this binary blend is miscible over the entire range of composition. The composition dependence of the Tg for this blend was well described by Gordon–Taylor equation with k = 1.8 (higher than unity) indicating strong intermolecular interaction between the two polymer components. The presence of a high Tg amorphous component (TMPC) had a strong influence on the crystallization kinetics of PCL in the blends. A substantial decrease in the crystallization kinetics was observed as the concentration of TMPC rose in the blends. The crystallization half‐time t0.5 increased monotonically with the crystallization temperature for all composition. At any crystallization temperature (Tc) the t0.5 of the blends are longer than the corresponding value for pure PCL. This behavior was attributed to the favorable thermodynamics interaction between PCL and TMPC which in turn led to a depression in the equilibrium melting point along with a simultaneous retardation in the crystallization of PC. The isothermal crystallization kinetics was analyzed on the basis of the Avrami equation. Linear behavior was held true for the augmentation of the radii of spherulites with time for all mixtures, regardless of the blend composition. However, the spherulites growth rate decreased exponentially with increasing the concentration of TMPC in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3307–3315, 2007  相似文献   

17.
A low molecular weight bisphenol‐A type epoxy resin was used as a reactive compatibilizer for poly(lactic acid) (PLA)/polyamide 610 (PA 610) biomass blends. To the best of our knowledge, this blend is the first biomass PA 610 blend in the literature. The epoxy functional groups could react with the terminal groups of both PLA and PA 610. An ester–amide interchange reaction led to a polyester–polyamide copolymer formation, and improved the compatibility of PLA and PA 610. The blends with epoxy resin showed an enhancement in the phase dispersion and interfacial adhesion compared with the blend without epoxy resin. The differential scanning calorimetry (DSC) analysis showed that the crystallization peak temperatures decreased with increasing epoxy content. The melting temperature of PA 610 decreased with the addition of PLA, but remained unchanged with increased compatibilizer dosages. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (Tg) of the blend, with the addition of 0.5 phr epoxy resin, slightly increased compared with that of neat PLA. However, the Tg of the blends remained unchanged with increasing epoxy resin content, and the higher content of epoxy resin in the blends resulted in improved mechanical properties and higher melt viscosity. The unnotched impact test showed that PA 610 could toughen PLA with the addition of epoxy resin. Moreover, the no‐break unnotched impact behavior was observed with the medium content of the compatibilizer, improving the notch sensitivity of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2563–2571, 2013  相似文献   

18.
The miscibility and crystallization kinetics of the blends of poly(trimethylene terephthalate) (PTT) and amorphous poly(ethylene terephthalate) (aPET) have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that PTT/aPET blends were miscible in the melt. Thus, the single glass transition temperature (Tg) of the blends within the whole composition range and the retardation of crystallization kinetics of PTT in blends suggested that PTT and aPET were totally miscible. The nucleation density of PTT spherulites, the spherulitic growth, and overall crystallization rates were depressed upon blending with aPET. The depression in nucleation density of PTT spherulites could be attributed to the equilibrium melting point depression, while the depression in the spherulitic growth and overall crystallization rates could be mainly attributed to the reduction of PTT chain mobility and dilution of PTT upon mixing with aPET. The underlying nucleation mechanism and growth geometry of PTT crystals were not affected by blending, from the results of Avrami analysis. POLYM. ENG. SCI., 47:2005–2011, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
Optically pure polylactides, poly(L ‐lactide) (PLLA) and poly(D ‐lactide) (PDLA), were blended across the range of compositions with poly(ε‐caprolactone) (PCL) to study their crystallization, morphology, and mechanical behavior. Differential scanning calorimetry and dynamic mechanical analysis (DMA) of the PLA/PCL blends showed two Tgs at positions close to the pure components revealing phase separation. However, a shift in the tan δ peak position by DMA from 64 to 57°C suggests a partial solubility of PCL in the PLA‐rich phase. Scanning electron microscopy reveals phase separation and a transition in the phase morphology from spherical to interconnected domains as the equimolar blend approaches from the outermost compositions. The spherulitic growth of both PLA and PCL in the blends was followed by polarized optical microscopy at 140 and 37°C. From tensile tests at speed of 50 mm/min Young's modulus values between 5.2 and 0.4 GPa, strength values between 56 and 12 MPa, and strain at break values between 1 and 400% were obtained varying the blend composition. The viscoelastic properties (E′ and tan δ) obtained at frequency of 1 Hz by DMA are discussed and are found consistent with composition, phase separation, and crystallization behavior of the blends. POLYM. ENG. SCI., 46:1299–1308, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
The addition of a thermotropic liquid crystalline, wholly aromatic copolyester, TLCP, improved the melt processability of poly(ether ketone ketone), PEKK. The tensile strength and modulus of the blends also improved with increasing TLCP, but the elongation at break decreased significantly. The blends were phase‐separated, but the polymers were partially miscible as evident from shifts of the glass transition temperature (Tg) of each component towards that of the other component in the blend. Similarly, the melting points (Tm) of both components were depressed by blending. When the crystallization temperature was above Tm of the TLCP, the PEKK crystallization rate in the blend was slower than for the pure material, while crystallization was faster when the temperature was below Tm of the TLCP. Polym. Eng. Sci. 44:541–547, 2004. © 2004 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号