首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In2O3 octahedrons were synthesized by carbothermal reduction method. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis (SAED) and room-temperature photoluminescence (PL) spectra. The results show that the products are single-crystalline In2O3 octahedrons with the arrises length in the range of 400-3000 nm. The PL spectra displays blue and green emission peaks which can be indexed to default and oxygen vacancies; blue-shift and intensity decrease was observed when excitation wavelength decreases from 380 nm to 325 nm. The growth mechanism of the In2O3 octahedrons is discussed.  相似文献   

2.
α-Al2O3 nanowires, with diameter around 10 nm, were synthesized in bulk quantity by heating the mixture of pure aluminum and graphite powders at 900 °C. Scarcity of oxygen is regarded as the reason for the growth of the small diameter α-Al2O3 nanowires at relatively low temperature. The product was characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence. The Oxygen vacancies in the nanowires lead to the strong photoluminescence in the wavelength range of 400-700 nm with its peak at 527 nm.  相似文献   

3.
M. Lei 《Materials Letters》2009,63(22):1928-1930
Zinc gallate (ZnGa2O4) nanowires were directly grown on the amorphous carbon-coated silicon substrates using a facile chemical vapor deposition method without any metal catalysts. The growth mechanism can be attributed to a self-organization vapor-liquid-solid (VLS) process. The amorphous carbon layer plays an important role in the nucleation and growth process of the ZnGa2O4 nanowires. The photoluminescence (PL) of the nanowires shows a broad, strong green emission band centered at 532 nm and a weak UV emission band at 381 nm, which can be attributed to a large amount of ionized oxygen vacancies and the combination of Ga3+ ions with free electrons in coordinated oxygen vacancies, respectively.  相似文献   

4.
Mass production of transparent semiconducting ternary oxide Zn2SnO4 nanowires is successfully synthesized by the thermal evaporation method without any catalyst. The as-synthesized products are characterized with field-emission scanning electron microscope (FE-SEM), X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS), high-resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SEAD). A formation of Zn2SnO4 nanowires based on a self-catalytic VLS growth mechanism is discussed. The photoluminescence spectrum (PL) of the nanowires shows a broad blue-green emission around the 300-600 nm wavelengths with a maximum center at 580 nm under room temperature.  相似文献   

5.
Tungsten oxide (WO3) nanowires with diameters of 15-40 nm and lengths of hundreds of nanometers were synthesized by thermal chemical vapor deposition (CVD) without using any catalyst in a low-temperature zone (200-300 °C) of a tube furnace via a two-step heating process. The morphology, composition, and crystal structure were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), Raman, ultraviolet UV-visible, and cathodoluminescence (CL) spectroscopy. XRD and TEM confirmed that the nanowires were triclinic WO3 with growth direction along [001]. Blue emission was observed in both the UV-visible and CL spectrum, indicating that the WO3 nanowires exhibited a red-shift at an optical absorption wavelength due to oxygen deficiencies. The crystallinity and size distribution of the nanowires influenced the bandgap. In the CL spectrum, the blue emission was at shorter wavelengths than reported previously, which can be attributed to the nanoscale size effect.  相似文献   

6.
GaN nanowires doped with Mg have been synthesized on Si (111) substrate through ammoniating Ga2O3 films doped with Mg under flowing ammonia atmosphere. The Mg-doped GaN nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL). The results demonstrate that the nanowires were single crystalline with hexagonal wurzite structure. The diameters of the nanowires ranged 20-30 nm and the lengths were about hundreds of micrometers. The intense PL peak at 359 nm showed a blueshift from the bulk band gap emission, attributed to Burstein-Moss effect. The growth mechanism of the crystalline GaN nanowires is discussed briefly.  相似文献   

7.
Metal–semiconductor Zn–ZnO core–shell microcactuses have been synthesized on Si substrate by simple thermal evaporation and condensation route using NH3 as carrier gas at 600 °C under ambient pressure. Microcactuses with average size of 65–75 μm are composed of hollow microspheres with high density single crystalline ZnO rods. The structure, composition and morphology of the product were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapor–liquid–solid (VLS) based growth mechanism was proposed for the formation of Zn–ZnO core–shell microcactuses. Room temperature photoluminescence (PL) investigations revealed a strong and broad blue emission band at 441 nm associated with a weak ultraviolet (UV) peak at 374 nm. This blue emission (BE) is different from usually reported green/yellow-green emission from Zn–ZnO or ZnO structures. The field emission (FE) measurements exhibited moderate values of turn-on and threshold fields compared with reported large field emissions for other materials. These studies indicate the promise of Zn–ZnO core–shell microcactuses for the applications in UV-blue light display and field emission microelectronic devices.  相似文献   

8.
Sn1−x Ni x O2 nanostructures such as nanocubes, nanospheres and hollow spheres were synthesized by a simple hydrothermal method. Room temperature photoluminescence spectra of the as-synthesized samples display a strong yellow emission at about 600 nm and a weak blue emission at about 430 nm. The as-prepared and annealed Sn1−x Ni x O2 (x = 0, 0.01, 0.02, 0.04) were characterized by X-ray diffraction, field emission scanning electron microscopy, Raman spectrum, UV–Vis absorption spectra, and room temperature photoluminescence spectra. By investigating the relationship between the Raman band centered at 560 cm−1 and the photoluminescence of the samples, we suggest that the broad yellow emission and weak blue emission primarily originate from singly ionized oxygen vacancies and tin interstitials, respectively.  相似文献   

9.
Well-crystallized ZnO nanowires have been successfully synthesized on NiCl2-coated Si substrates via a carbon thermal reduction deposition process. The pre-deposited Ni nanoparticles by dipping the substrates into NiCl2 solution can promote the formation of ZnO nuclei. The as-synthesized nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectrum. The results demonstrate that the as-fabricated nanowires with about 60 nm in diameter and several tens of micrometers in length are preferentially arranged along [0001] direction with (0002) as the dominate surface. Room temperature PL spectrum illustrates that the ZnO nanowires exist a UV emission peak and a green emission peak, and the peak centers locate at 387 and 510 nm. Finally, the growth mechanism of the nanowires is briefly discussed.  相似文献   

10.
Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH3)42+ precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV (∼375 nm), blue (∼465 nm), and yellow (∼585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly found that the intensity of light emission at ∼585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 °C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.  相似文献   

11.
Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size (120–140 nm), and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays. The electrochemical deposition potential of Cu metal nanowires (?180 mV vs. SCE) was determined from X-ray diffraction (XRD) patterns. The microstructure and chemical composition of Cu nanowire arrays were characterized using field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template with diameters of 120–140 nm. The valence of copper was controlled by the porous alumina template during the annealing process. Copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template. Single-crystal Cu2O nanowire arrays were also obtained under the template embedded.  相似文献   

12.
X.J. Wang  B. Dong  Z. Zhou 《Materials Letters》2009,63(13-14):1149-1152
Large scale, high density SiOx nanowires have been synthesized using a novel Fe3O4 nanoparticles catalyst. The lengths of SiOx nanowires are in the range of several tens to hundreds of micrometers, and the diameters of nanowires are 20–80 nm. Transmission electron microscopy and high-resolution transmission electron microscopy show that the SiOx nanowires are amorphous, and energy dispersive X-ray spectrometry analysis reveals that SiOx nanowires consist of Si and O elements in an atomic ratio of approximately x = 1.4–1.7. The vapor–liquid–solid (VLS) mechanism is the main formation mechanism of SiOx nanowires. The SiOx nanowires have two broad photoluminescence peaks at about 405 nm and 465 nm when the 250 nm ultraviolet fluorescent light excitation is applied at room temperature. The SiOx nanowires with good photoluminescence properties are promising candidates for ultraviolet–blue optical emitting devices.  相似文献   

13.
TiO2-sheathed Ga2O3 one-dimensional (1D) nanostructures were synthesized by thermal evaporation of GaN powders and then sputter-deposition of TiO2. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis results indicate that the Ga2O3 cores are of a single crystal nature with a monoclinic structure while the TiO2 shells are amorphous. Photoluminescence (PL) emission is slightly decreased in intensity by TiO2 coating, but it is significantly increased by thermal annealing in an oxygen atmosphere. The emission peak is also shifted from ~500 to ~550 nm by oxygen annealing. The increase in the green emission is due to the increase in the concentration of the Ga vacancies in the cores by the inflow of oxygen during oxygen annealing. On the other hand, annealing in a nitrogen atmosphere leads to a red shift of the emission to ~700 nm originating from nitrogen doping.  相似文献   

14.
Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 µm. Raman peak at 437.8 cm− 1 displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.  相似文献   

15.
High-quality GaN nanowires (NWs) and zigzag-shaped NWs were grown on catalyst-free Si(1 1 1) substrate by thermal chemical vapor deposition (TCVD). Gallium (Ga) metal and aqueous NH3 solution are used as a source of materials. Ga vapor was directly reacts with gaseous NH3 under controlled nitrogen flow at 1050 °C. Scanning electron microscopy (SEM) images showed that the morphology of GaN displayed various densities of NWs and zigzag NWs depending on the gas flow rate, and increased nitrogen flow rate caused density reduction. The GaN NWs exhibited clear X-ray diffraction analysis (XRD) peaks that corresponded to GaN with hexagonal wurtzite structures. The photoluminescence spectra showed that the ultraviolet band emission of GaN NWs had a strong near band-edge emission (NBE) at 361–367 nm. Yellow band emissions were observed at low and high flow rates due to nitrogen and Ga vacancies, respectively. Moderate N2 flow resulted in a strong NBE emission and a high optical quality of the NWs. This study shows the possibility of low-cost synthesis of GaN nanostructures on Si wafers using aqueous NH3 solution.  相似文献   

16.
(Zn, N)-codoped TiO2 nanoparticles were prepared by the sol–gel method. X-ray diffraction (XRD) results testified that anatase samples were obtained. Transmission electron microscopy (TEM) patterns revealed that the average grain size of all the samples is about 15 nm and the Zn doping caused obvious particle aggregation. The Brunauer–Emmett–Teller (BET) surface areas of the samples were measured to testify the aggregation. The Zn doping caused slight blue-shift of absorption edge by the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) measurements. The photocatalytic activity for the degradation of methylene blue (MB) solution was best enhanced in the (Zn, N)-codoped TiO2 with 1 at.% Zn doping level. Photoluminescence (PL) emission spectra of the samples were also investigated, which revealed that the oxygen vacancy and isolated N 2p states played important roles in the photo-generated charge carrier recombination in the (Zn, N)-codoped TiO2. It was suggested that the doping induced oxygen vacancies could promote the photocatalytic oxidation processes.  相似文献   

17.
Smooth germanium nanowires were prepared using Ge and GeO2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.  相似文献   

18.
《Materials Letters》2006,60(25-26):3076-3078
GaN nanowires have been synthesized on Si(111) substrate through ammoniating Ga2O3/BN films under flowing ammonia atmosphere at the temperature of 900 °C. The as-synthesized GaN nanowires were characterized by X-ray diffraction (XRD), selected-area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM). The results demonstrated that the nanowires are hexagonal wurtzite GaN and possess a smooth surface with diameters ranging from 40 to 100 nm and lengths up to several tens of micrometers. The growth mechanism of crystalline GaN nanowires is discussed briefly.  相似文献   

19.
C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles have been synthesized by the reaction between C3N3Cl3 and NaN3 with Zn powder as catalyst. The process was carried out using a constant-pressure benzene thermal method at 40 MPa and 220 °C. The prepared nanowires have a diameter range of 3-6 nm and length range of 100-200 nm, while the diameters of the nanoparticles range from 10 nm to 40 nm. The as-prepared samples were characterized by X-ray powder diffraction (XRD), Fourier transform spectroscopy (FTIR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS).  相似文献   

20.
The GaN nanowires were successfully synthesized on Si(111) substrates by ammoniating the Ga2O3/ZnO films at 900 °C. The structure and morphology of the as-prepared GaN nanowires were studied by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), scanning electron microscopy (SEM) and field-emission transmission electron microscopy (FETEM). The results show that the single-crystal GaN nanowires have a hexagonal wurtzite structure with lengths of about several micrometers and diameters ranging from 30 nm to 120 nm, which are conducive to the application of nanodevices. Finally, the growth mechanism is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号