首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能   总被引:2,自引:0,他引:2  
采用微弧氧化技术和有机镀膜技术相结合的复合处理方法实现Mg-Mn-Ce镁合金表面改性,获得超疏水复合膜层,研究微弧氧化膜的表面特征、有机镀膜电化学反应过程、复合膜层的润湿特性和耐腐蚀性能。结果表明:镁合金经微弧氧化处理后由于微弧氧化膜表面呈微纳多孔结构,表现为超亲水特性,其蒸馏水的静态接触角接近0°;在微弧氧化膜上经有机镀膜后,其形成的有机薄膜的静态接触角高达173.3°,表现出优良的超疏水特性。镁合金经微弧氧化处理后具有良好的耐腐蚀性能,经有机镀膜超疏水复合处理后,耐腐蚀性能得到进一步提高。复合膜层在3.5%NaCl溶液中,与基体相比动电位极化腐蚀电流密度减小了3个数量级、而电化学阻抗提高了3个数量级,耐腐蚀性能明显改善。微弧氧化与有机镀膜相结合的复合处理使镁合金表面在实现超亲水-超疏水功能转换的同时显著提高镁合金的耐腐蚀性能。  相似文献   

2.
先采用低温超音速火焰喷涂技术在AZ91D镁合金表面沉积一层致密的Al涂层,再采用微弧氧化技术进行微弧氧化处理,进而获得复合涂层。对热喷涂铝涂层微弧氧化的成膜过程、氧化膜微观结构和成分、复合涂层的耐腐蚀性能等进行了研究,并与在2024铝合金及AZ91D镁合金表面的微弧氧化过程和氧化膜层进行了对比。结果表明:在Al涂层上微弧氧化形成的微弧氧化膜呈多孔珊瑚状,相结构主要为γ-Al2O3,没有微裂纹产生,其微弧氧化过程与2024铝合金的微弧氧化大致相同;复合涂层具有良好的抗盐雾腐蚀性能,可显著提高镁合金的耐蚀性。  相似文献   

3.
通过微弧氧化-溶胶凝胶复合表面处理技术来提高铝合金的耐腐蚀性能,分析了多层凝胶层对6061铝合金耐腐蚀性能的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和电化学分析等方法对膜层的表面形貌、化学组成、结构以及耐腐蚀性能进行了表征。研究表明:TiO2溶胶渗入微弧氧化陶瓷膜的微孔以及裂纹中,能有效阻挡腐蚀介质的扩散和渗透;复合处理后的试样较仅微弧氧化处理更平滑、致密;膜层除了γ-Al2O3相外,经高温退火处理后出现TiO2锐钛矿,并形成较好的晶相结构;在3.5%NaCl溶液中的室温电化学行为中,复合处理较微弧氧化处理后的试样自腐蚀电位上升最高约400 mV,自腐蚀电流密度最高减小约3个数量级,极化电阻明显增大;随着凝胶层厚度的增加耐腐蚀性能逐渐增强,但当凝胶层数大于4时,膜层龟裂现象严重,并导致耐腐蚀性能开始下滑。  相似文献   

4.
王华  刘艳艳 《表面技术》2023,52(11):1-22, 127
镁合金是一种有发展前途的绿色工程金属材料,但其较差的抗腐蚀性能限制了它的大规模应用。对镁合金表面进行超疏水处理,能够极大地提高镁合金的耐腐蚀性能。当超疏水试样浸泡在腐蚀溶液中时,该结构将在腐蚀介质中形成固-气-液界面层,减少镁合金表面与腐蚀介质之间的接触面积,从而降低腐蚀速度。超疏水表面需要满足微纳米结构和低表面能2个必要条件。可以采用二步法或一步法在镁合金表面制备超疏水表面,详细介绍了在镁合金表面构造微纳米结构的方法,包括激光处理、机加工、化学刻蚀、化学镀、电化学沉积、阳极氧化、微弧氧化、水热合成和喷涂等方法。超疏水表面一旦受到机械损伤,微纳米结构无法满足条件,超疏水表面的“气垫效应”消失,腐蚀介质就会直接与微纳米结构接触,因此需要保证构建的微纳米粗糙结构对镁基体具有良好的保护作用并具有自愈功能。通过制备复合涂层,提高下层微纳米结构的自愈合性能,上层涂层的超疏水性与下层涂层的良好物理屏障能力的协同效应可以改善涂层的长久耐腐蚀性能。综述了在镁合金上制备具有良好耐腐蚀性能的复合超疏水表面的方法,并对镁合金超疏水表面防护技术的研究方向进行了展望。  相似文献   

5.
采用微弧氧化与有机镀膜技术对AZ31镁合金进行复合表面改性,分别对微弧氧化膜的形成过程及表面特征、微弧氧化膜表面有机镀膜过程、微弧氧化膜与复合膜的润湿性及耐腐蚀性进行研究.结果表明镁合金经微弧氧化改性后,由于表面具有微纳多孔粗糙结构,同时具有较高的表面自由能和极性分量,与蒸馏水接触时存在较强的范德华力和毛细管吸附力,且对强极性水分子具有很强的相溶性,使其蒸馏水的静态接触角接近0°,表现为超亲水特性;而微弧氧化膜表面再经有机镀膜复合改性后,具有较低的表面自由能,对强极性水分子具有一定的排斥作用,使其静态接触角达到113.7°,表现为疏水特性;微弧氧化膜经有机镀膜表面改性后,耐腐蚀性能明显改善,疏水复合膜层在0.1mol/LNaCl溶液中,与基体相比,其动电位极化腐蚀电流密度减小3个数量级,而电化学阻抗提高3个数量级,表现为类似纯电容行为.  相似文献   

6.
镁合金微弧氧化膜有机封孔耐腐蚀性能的研究   总被引:6,自引:0,他引:6  
镁合金AZ91D经微弧氧化处理后得到与基体结合牢固、表面多孔的氧化膜,研究了在该氧化膜上涂覆有机涂层进行封孔的方法,利用扫描电镜从复合膜层的横截面分析了有机涂层对微弧氧化膜层的封孔情况,并对封孔后的镁合金表面膜层的结合性能和耐腐蚀性能进行了初步试验分析.研究表明,有机涂层能渗入微弧氧化膜孔洞内5~30μm,与氧化膜层结合紧密.经1% HCl溶液浸泡试验,结果表明经过有机封孔后的微弧氧化膜层的耐腐蚀性能大大提高.  相似文献   

7.
为进一步提高镁合金微弧氧化多孔陶瓷层的耐蚀性,采用原位水热法及硬脂酸表面改性方法,在陶瓷层表面制备超疏水镁铝层状双金属氢氧化物(Mg-Al LDH)涂层。采用X射线衍射议、扫描电子显微镜及能谱仪研究涂层的结构、形貌及成分,研究水热处理时间对Mg-Al LDH膜形成的影响。结果表明,随着水热处理时间的延长,原位生长的Mg-AlLDH将MAO陶瓷层表面的微孔和微裂纹逐渐闭合。电化学测试结果表明,与MAO陶瓷层和LDH/MAO涂层相比,超疏水LDH/MAO复合涂层具有最低的腐蚀电流密度、最正的腐蚀电位以及最大的阻抗模量;浸泡实验结果证明,具有主动防护性能的超疏水LDH/MAO涂层可以显著提高MAO陶瓷层的长期耐腐蚀性能。  相似文献   

8.
采用微弧氧化技术在AZ91镁合金表面制备陶瓷涂层,然后在该涂层表面通过磁控溅射镀铜技术制备复合膜层。研究了微弧氧化陶瓷层和复合膜层的表面物相组成、表面粗糙度、表面及截面形貌、表面润湿性及电化学性能。结果表明:AZ91镁合金经微弧氧化处理后由于微弧氧化陶瓷层呈微纳粗糙多孔结构,表现为亲水特性,其物相由MgO、Mg及Mg_2SiO_4组成;而微弧氧化陶瓷层经磁控溅射镀铜处理后表面获得较为致密的具有疏水特性的铜层,表面粗糙度降低;四探针测试结果说明复合膜层的方阻为16.2 m?·~(-1),导电性良好;动电位极化曲线测试结果说明复合膜层与基体镁合金相比,其腐蚀电流密度降低10%,腐蚀电位提高了约0.36 V,腐蚀极化电阻提高约80倍;与微弧氧化陶瓷层相比,复合膜层的腐蚀电位提高了约0.24 V,但其腐蚀电流密度和腐蚀极化电阻有所下降。研究结果表明,微弧氧化与磁控溅射镀铜相结合的复合处理技术可在不降低镁合金陶瓷层耐蚀性的基础上显著提高其表面的导电性能。  相似文献   

9.
《铸造技术》2015,(12):2898-2900
对体育器械用AZ91镁合金进行了微弧氧化表面改性处理,研究了电流密度和电源频率对微弧氧化膜层组织形貌、物相组成和耐腐蚀性能的影响。结果表明,膜层的点蚀电位随着电流密度和电源频率的增加而减小,导致膜层的整体耐腐蚀性能下降。采用较低的电源频率有助于提高膜层的耐腐蚀性能。  相似文献   

10.
唐洋洋  李林波  王超  杨潘  杨柳  王丹 《表面技术》2022,51(4):66-76, 91
微弧氧化(MAO)表面处理技术常用于改善镁合金的特定性能,但MAO膜容易产生微孔和微裂纹从而降低镁合金的耐蚀性。为了提高镁合金微弧氧化膜的使用寿命,主要综述了国内外MAO工艺过程调节措施和MAO膜后处理技术的最新研究进展,重点介绍了近年来国内外镁合金MAO复合膜的研究热点。着重介绍了通过工艺过程调节提高镁合金MAO膜长期保护性能的几项措施:通过电参数和电源类型调节协同电解液成分调整提高MAO膜耐蚀性;通过加入电解液添加剂提高MAO电解液稳定性和电导率;利用具有自封孔作用的添加剂可以参与成膜的特点提高MAO膜致密性;通过复合工艺在MAO膜传统封孔后进一步封闭孔隙。此外,详细介绍了包括疏水涂层、化学镀、类金刚石涂层、生物膜涂层等复合膜工艺的研究进展,强调了复合膜不仅耐蚀性高而且具有功能化应用前景:超疏水复合膜对镁基底具有主动的腐蚀保护作用,超疏水膜协同MAO膜可以提高表面的疏水性;镀镍层致密无微孔且与MAO膜交错咬合能够改善镁MAO膜的导电性和耐蚀性;MAO涂层代替金属缓冲层能够提高类金刚石涂层和基体界面结合强度;生物复合涂层不仅耐蚀性高还具有促进细胞增殖和分化生物活性的作用。最后,基于镁...  相似文献   

11.
目的分析Ti N颗粒在镁合金微弧氧化过程中的作用,并研究其在膜层中对镁合金硬度、耐磨和耐蚀等性能的影响。方法通过在微弧氧化电解液中添加2.7μm Ti N颗粒,并使其充分分散于电解液中,使电解液中Ti N颗粒的质量浓度分别为0、2、4、6 g/L,并控制其他实验参数(如电流密度、频率、占空比和氧化时间)一样的情况下进行实验,通过电子显微镜、涂层厚度测厚仪、显微维氏硬度计、X射线衍射和电化学工作站,分别从膜层的表面形貌、厚度、硬度、相组成及耐蚀性等方面,研究了Ti N颗粒对镁合金微弧氧化膜层性能的影响。结果在微弧氧化电解液中添加Ti N颗粒后,相同电化学参数下制得的微弧氧化膜层变得致密,厚度、硬度有所增加,氧化膜层主要由Mg、MgO、Mg2Zr5O12、Ti N组成。极化曲线显示,加入Ti N颗粒,制备的微弧氧化膜层比未加入Ti N颗粒制得的膜层的腐蚀电流下降了2个数量级。阻抗图谱表明,电阻值增加了1个数量级。结论 Ti N颗粒能够随镁合金的微弧氧化过程进入制得的氧化膜层中,并且能够增加膜层厚度和硬度,使膜层的耐磨、耐蚀性得到提高。  相似文献   

12.
镁合金微弧氧化工艺参数研究   总被引:2,自引:2,他引:0  
镁合金是目前最轻的金属,它可以部分替代一些钢铁材料来实现材料的轻量化。而且镁合金具有比强度、比刚度较高,减震性、减噪性、加工性较好等优点,市场对它的需求量也越来越大。但是镁合金的电位很低,易与其他金属发生电偶腐蚀,利用微弧氧化可在镁合金表面制得一层综合性能较好、类似陶瓷层的一种膜层,可大大提高镁合金的耐蚀性、耐磨性及耐高温性,因此微弧氧化技术在镁合金表面处理上得到了较快发展。对此,首先介绍了微弧氧化机理的研究现状,总结了微弧氧化过程的几个主要阶段及其主要作用;其次,重点概述了影响镁合金微弧氧化陶瓷膜制备工艺的主要因素,特别是电参数、电解液及氧化时间等对膜层结构、形貌及性能的影响;最后提出目前镁合金微弧氧化工艺存在的几个主要问题,并对其解决办法及应用前景进行了展望。  相似文献   

13.
从火花放电方面归纳整理了镁合金微弧氧化膜层的形成机理,并分析了膜层结构。在此基础上,结合国内外研究现状,阐述了预处理、电解质和添加剂以及电参数(电压、电流模式和脉冲频率)和封孔技术对镁合金微弧氧化膜层耐蚀性和生物相容性的影响。着重分析了电解质和添加剂的种类、浓度对膜层和生物性能的影响机制,其中电解质包括碱性硅酸盐和磷酸盐电解液等,添加剂包括甘油、氟化物、羟基磷灰石和纳米粒子等。研究发现,碱性磷酸盐电解质的加入可以降低膜层腐蚀速率,促进骨整合和细胞附着过程,羟基磷灰石、Ca、P等具有生物活性和对人体有益的粒子作为添加剂加入,可以显著提高膜层的耐蚀性和生物相容性。最后,基于研究现状,对镁合金微弧氧化技术在生物医用方面的发展进行了展望。  相似文献   

14.
微弧氧化技术在铝、镁及其合金海洋环境防腐蚀中的应用   总被引:3,自引:2,他引:1  
分析了海洋腐蚀的特点,对比了微弧氧化膜与几种常用防护膜层的形貌和耐蚀性,研究了微弧氧化膜的绝缘性能及其经喷漆、电泳后的耐蚀性能。结果表明:通过微弧氧化在铝、镁及其合金表面生成具有陶瓷组织的氧化膜,然后进行喷涂或电泳处理,可有效防止点蚀、缝隙腐蚀及电偶腐蚀的发生,是海洋环境中铝、镁合金防腐蚀的一条新途径。  相似文献   

15.
目的改善AZ31镁合金的耐腐蚀性能及生物活性。方法使用微弧氧化技术,分别在以六偏磷酸钠为主盐的电解液和以六偏磷酸钠为主盐、以纳米羟基磷灰石(HA)为添加剂的电解液中,在AZ31镁合金表面制备了微弧氧化涂层。通过扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)表征了涂层的微观形貌、元素特征和相组成。通过电化学方法和浸泡实验考察了涂层的耐蚀性。通过细胞实验评价了两种涂层的细胞相容性。结果电解液中的HA可以进入到微弧氧化涂层中,含HA的微弧氧化涂层较不含HA的更致密,且有封孔现象。电化学方法及浸泡实验结果表明,含HA的微弧氧化涂层的耐腐蚀性能更好。细胞表面粘附实验和细胞增殖实验也表明,经表面纳米HA微弧氧化处理后的AZ31镁合金生物相容性更好,且对MC3T3-E1细胞的增殖有促进作用。结论六偏磷酸钠电解液中添加纳米HA,可以在AZ31镁合金表面制备出含HA的微弧氧化涂层,且其耐腐蚀性能和生物活性均优于不含HA的微弧氧化膜。  相似文献   

16.
镁合金凭借其优异的生物安全性、良好的载荷传递性及独特的降解性,在医用植入领域表现出巨大的应用潜力和发展前景。然而镁合金在生理环境下的腐蚀溶解速率过快,导致材料力学性能衰减加速进而过早失效。表面改性作为镁合金耐蚀性能提升的重要途径,不仅能通过表层物理屏障的形成来减缓金属材料的溶解速率,还能抑制合金内部腐蚀电偶反应的强烈程度及调控其生物相容性。概述了典型表面改性工艺的技术优势,包括涂层在合金表面的多覆盖度、高膜层厚度、强附着力以及良好生物相容性等。同时归纳了几种表面改性工艺所存在的问题,包括较差的长期耐蚀性、低应力承受能力以及技术安全性等。在此基础上,重点综述了近年来镁合金表面改性涂层的最新研究动态,其中简要介绍了化学转化、微弧氧化、等离子喷涂等几种常见的表面改性涂层形成机制。系统阐述了涂层对镁合金降解过程和生物相容性的影响规律,以及部分元素或粒子对涂层微观结构以及生物性能的作用机理。最后展望了医用镁合金表面改性涂层的发展方向。  相似文献   

17.
通过微弧氧化着色技术在Mg-Li合金表面生成浅绿色类陶瓷膜层,并在着色膜表面有机镀膜复合改性。用蒸馏水在镀膜表面的静态接触角以及动电位极化曲线和电化学阻抗谱测试,分别研究复合改性前后润湿性及耐蚀性。结果表明,微弧氧化着色表面通过有机镀膜生长了一层有机薄膜,接触角由近0°变为169.2°,实现了超亲水到超疏水的功能转化。Mg-Li合金基体经微弧氧化着色改性后,耐蚀性能明显提高,经复合改性后耐蚀性能进一步提高;与基体相比,超疏水复合膜在0.1 mol/L NaCl溶液中的动电位极化腐蚀电流密度减小3个数量级,电化学阻抗提高3个数量级。  相似文献   

18.
镁合金表面超声微弧氧化载氟生物涂层耐磨性和耐蚀性   总被引:1,自引:1,他引:0  
目的提高医用镁合金微弧氧化涂层的耐蚀性、耐磨性,并赋予涂层抗菌性和生物活性。方法镁合金表面采用超声微弧氧化技术,在镀液中加入0.4、1.4、2.4、3.4 g/L的Na F,制备载氟生物涂层。通过SEM观察载氟对涂层表面形貌的影响,分析涂层的主要元素变化,进行了涂层厚度、孔隙率、拉伸强度的测定,并进行了摩擦磨损实验、电化学腐蚀实验、覆膜抗菌实验,评价了不同载氟生物涂层的结合性能、耐磨性能、耐蚀性和抗菌性。结果适量载氟生物涂层表面分布了均匀的孔隙。随着NaF浓度的增加,涂层中氟元素的含量升高,涂层厚度也随之增加,且涂层的结合强度提高了3.5~10.0 MPa。氟元素可促进涂层表面氧化物反应膜的形成,有利于减轻粘着磨损,使摩擦系数降低了0.17~0.35。载氟涂层的自腐蚀电位提高了95~170 m V,而自腐蚀电流降低约两个数量级,涂层抗菌率为61%~76%。结论超声微弧氧化镀液中添加Na F,提高了涂层结合强度、耐磨性、耐腐蚀性,涂层具有一定的抗菌性,实现了生物涂层的多功能性。  相似文献   

19.
鉴于当前高性能镁合金的应用需求,亟待提高镁合金的表面硬度、摩擦磨损性以及耐蚀性等表面性能。新型固态加工技术——搅拌摩擦加工以及摩擦堆焊能够实现材料的大塑性变形,在镁合金表面微观组织结构改性、表面复合材料化以及金属焊敷层制备等方面得到了成功的应用。在介绍搅拌摩擦加工以及摩擦堆焊技术特性的基础上,分别从工艺手段、组织演变以及性能改善等方面综述了摩擦加工技术用于镁合金表面改性的研究现状。国内外研究结果显示,搅拌摩擦加工可有效细化镁合金表面晶粒,破碎粗大第二相,导入增强粒子,实现表面复合化,进而显著提高镁合金的硬度、耐磨性以及耐蚀性。摩擦堆焊技术可在镁合金表面成功制备无稀释、结合完整性高、均匀细化的金属焊敷层,有效改善镁合金表面硬度及耐磨性。通过对用于镁合金表面改性的摩擦加工技术研究现状的总结,展望了镁合金搅拌摩擦加工以及摩擦堆焊的发展前景,提出了需要进一步研究的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号