首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic ß-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity—its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945?°C down to 25?°C and found the couplings, which undergo the antiferromagnetic?→?ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.  相似文献   

2.
Multiferroic ceramic samples of Bi1−x Gd x FeO3 (x=0, 0.05, 0.1 and 0.15) have been prepared by rapid liquid-phase sintering technique. The effect of Gd substitution on ferroelectric and magnetic properties of Bi1−x Gd x FeO3 ceramics has been investigated. The results of X-ray diffraction (XRD) patterns show that the single-phase BiFeO3 sample has a rhombohedral structure and Gd3+ substitution for Bi3+ has not affected its structure. Experimental results suggest that for Bi1−x Gd x FeO3 system, the ferroelectric and magnetic properties of BiFeO3 are improved by Gd doping and the loop area increases with the Gd content. When x=0.15, saturated ferroelectric hysteresis loop is observed at room temperature with the maximal 2Pr=1.62 μC/cm2, which is about 578.6% higher than that of BiFeO3.  相似文献   

3.
BiFeO3(BFO) particle was successfully synthesized by normal citric acid sol–gel method and the size of BiFeO3 particle is about 200 nm. BiFeO3/polyaniline (PANI) composites with the different weight ratio were synthesized by in situ emulsion polymerization. The citric acid doped PANI is fibrous and form a loose structure outside the BFO particle. With the increasing of PANI, the conductivity value of composites are increasing to 9.34?×?10?2 S/cm. Moreover, the permittivity also enhance with the increasing of conductivity, which contribute to the improvement of dielectric loss. Microwave absorbing properties were investigated with a vector network analyzer in 1–18 GHz. The minimum reflection loss (RL) value is about ?40.2 dB at 8.3 GHz when the thickness is 3.5 mm, and the maximum bandwidth less than ?10 dB is 3.5 GHz (from 13.5 to 18 GHz) at the thickness of 2 mm. 3 mm millimeter-wave-attenuation properties were also tested, and the maximum attenuation value of BFO/PANI composites reach 15.71 dB. The composites can dissipate microwave energy into heat effectively by dielectric relaxation because of the suitable conductivity. The interface scattering and multiple reflections also play a important role because of the increasing of a loose structure. The BFO/PANI composite can be taken as a promising lightweight and multiband microwave absorber.  相似文献   

4.
The multiferroic materials Bi0.95Er0.05Fe1?xCox O3 (x = 0, 0.01, 0.03, and 0.05) are synthesized by solvothermal method. X-ray diffraction pattern is used to confirm the formation of rhombohedral crystal structure. TEM images show agglomerated nanosize particles. With the concentration of Co, a red shift is observed in the charge transfer transition of O2p-Fe3d band and band gap decreases. At higher concentration of Co, the saturation magnetization enhances and coercivity also varies with the concentration of Co. The photocatalytic degradation of methylene blue is evaluated under the visible light with the assistance of H2O2. With the increase in Co concentration, the photocatalytic activity decreases. The main species responsible for the degradation is found out using scavengers like ammonium oxalate, silver nitrate, p-benzoquinone, and tert-butyl-alcohol. The possible mechanism for the degradation of dye is explained.  相似文献   

5.
In this study, the magnon excitations in multiferroic BiFeO3 (BFO) have been discussed. The studies are based on the spin wave theory and Katsura’s model. The influence of the spin wave excitations on the terahertz absorption is discussed. The antiferromagnetic and ferroelectric interactions in multiferroic BFO were included using an effective fermion Hamiltonian. This Hamiltonian is bosonized and diagonalized, using Holstein–Primakoff and Bogoliubov transformations, respectively. An effective boson Hamiltonian is diagonalized to determine the excitation energy of the spin wave. The results obtained in this study are in qualitative agreement with the experimental data.  相似文献   

6.
This work examines conditions for skyrmion lattice stability in BiFeO3 multiferroic films possessing record high ferroelectric and antiferromagnetic transition temperatures, giant polarization, and a giant magnetoelectric effect. Using analytical and numerical calculations, we demonstrate stability of solitary spin vortices (skyrmions) and skyrmion lattices in BiFeO3 films owing to the Dzyaloshinskii-Moriya interaction. Our results confirm that BiFeO3 can be used as a matrix for chips with ultrahigh data density, up to 10 Tb/cm2.  相似文献   

7.
A novel, low-temperature process is proposed for the synthesis of the multiferroic compound BiFeO3. It enables the preparation of nanoparticulate material at temperatures as low as 200–250°C. An important role in the low-temperature synthesis of bismuth orthoferrite is played by ammonium nitrate additions and excess bismuth oxide.  相似文献   

8.
A nickel modified BiFeO3–BaTiO3 electronic system has been fabricated by using a high-temperature solid-state reaction process. Preliminary X-ray structural analysis has confirmed the formation of a single-phase material in the orthorhombic crystal system. The dielectric and impedance characteristics of the prepared material have been studied in a wide range of frequency (1 kHz-1 MHz) at different temperatures (25–500 °C) for the better understanding of the frequency-temperature dependence of its capacitive and resistive behavior respectively. A significant effect of grains and grain boundaries of the resistive characteristics of the material is observed at high temperatures. The electrical conductivity of the material increases with increase in frequency in the low-temperature region. Preliminary study of a small amount of Ni doping in the above binary system (i.e., BiFeO3–BaTiO3) has provided many interesting results which may be useful for the fabrication of an electronic device.  相似文献   

9.
The Fadeev model is used for describing the recently discovered toroidal spin ordering in piezoelectric and ferrimagnetic GaFeO3 and piezo- and magnetoelectric Cr2O3 and BiFeO3. A stable toroidal solution of the Faddeev model with the topological charge Q= 1 in an external homogeneous magnetic field was obtained using the trial function method. The energy of a toroid as a function of its radius (R) was determined at various values of the external magnetic field (H). It was shown that the energy minimum is shifted toward smaller R’s with an increase in H. At a critical field value, the torus collapses so that the local spin structure disappears. It is suggested to use magnetic field for controlling the torus size in multiferroics, promising materials of spintronics.  相似文献   

10.
We report on the growth and magnetic properties of La2/3Sr1/3MnO3/SrTiO3/CoFe2 hard-soft magnetic systems prepared by pulsed laser deposition on SrTiO3(001) substrates. In situ reflection high-energy electron diffraction along the [100]SrTiO3 substrate azimuth and atomic force microscopy measurements reveal that La2/3Sr1/3MnO3 and SrTiO3 grow both in a three dimensional mode and that the roughness of the lower and upper magnetic/non-magnetic interfaces ranges between 2 and 4 Å. Cross-section transmission electron microscopy observations show that the layers are continuous, with an homogeneous thickness, and that the interfaces are mostly sharp and correlated. The magnetization curves show a two step reversal of the magnetization, with very distinct coercive fields. A small anisotropy is observed for the CoFe2 layer with an in plane easy magnetization axis along the [110]SrTiO3 direction. Minor magnetization loops indicate that the coupling between the magnetic layers is negligible.  相似文献   

11.
The technology of ceramic BiFeO3, Bi0.95Nd0.05FeO3, and Bi0.95La0.05FeO3 multiferroics is described. The room-temperature magnetization, magnetoelectric (ME), and magnetodielectric (MDE) effects in these compounds have been studied. It is established that even a small fraction (x = 0.05) of rare-earth additives (La, Nd) to bismuth ferrite not only enhance its magnetic properties, but also significantly influence the ME and MDE effects. The dependence of the ME effect on the frequency of modulation of the alternating magnetic field in Bi0.95Nd0.05FeO3, and Bi0.95La0.05FeO3 is more pronounced than in pure BiFeO3.  相似文献   

12.
Samples of xBiFeO3–(1 − x)BaTiO3 (x = 0, 0.02, 0.04, 0.06, 0.07 and 0.08) were synthesized by solid state reaction technique and sintered in air in the temperature range 1,220–1,280 °C for 4 h. X-ray diffraction data showed that 2–8 mol% BiFeO3 can dissolve into the lattice of BaTiO3 and form single perovskite phase. The crystal structure changes from tetragonal to cubic phase at room temperature when 8 mol% of BiFeO3 was added into BaTiO3. Scanning electron microscope images indicated that the ceramics have compact and uniform microstructures, and the grain size of the ceramics decreases with the increase of BiFeO3 content. Dielectric constants were measured as functions of temperatures (25–200 °C). With rising addition of BiFeO3, the Curie temperature decreases. For the sample with x = 0.08, the phase transition occurred below room temperature. The boundary between tetragonal and cubic phase of the BiFeO3–BaTiO3 system at room temperature locates at a composition between 7 and 8 mol% of BiFeO3. The diffusivity parameter γ for compositions x = 0.02 and x = 0.07 is 1.21 and 1.29, respectively. The relaxor-like behaviour is enhanced by the BiFeO3 addition.  相似文献   

13.
The effective microwave absorption materials could contribute to alleviating the electromagnetic wave pollution. However, conventional microwave absorption materials usually suffer from insufficient absorption intensity and the narrow effective absorption bandwidth. Herein, BiFeO3/BaFe7(MnTi)2.5O19 composites are proposed to address these issues through offering synergetic electromagnetic properties and proper electromagnetic properties. BiFeO3 combined with BaFe7(MnTi)2.5O19 exhibits dielectric multiple relaxation behaviors, strong ferromagnetic resonance and electromagnetic matching, ensuring increased multi-band microwave absorption. Accordingly, the minimum reflection loss (RL) of the composite with volume ratio of 1.5:1 reaches ??48 dB, and the bandwidth less than ??10 dB covers multi-frequencies at C, X and Ku band. These results suggest that BiFeO3/BaFe7(MnTi)2.5O19 composite could be a promising microwave absorption material in imaging, healthcare, information safety and military fields.  相似文献   

14.
Local piezoresponse hysteresis loops were systematically studied on the surface of ferroelectric thin films of BiFeO3 grown on SrRuO3 and La0.7Sr0.3MnO3 electrodes and compared between ultrahigh vacuum and ambient environment. The loops on all the samples exhibited characteristic asymmetry manifested in the difference of the piezoresponse slope following local domain nucleation. Spatially resolved mapping has revealed that the asymmetry is strongly correlated with the random-field disorder inherent in the films and is not affected by the random-bond disorder component. The asymmetry thus originates from electrostatic disorder within the film, which allows using it as a unique signature of single defects or defect clusters. The electrostatic effects due to the measurement environment also contribute to the total asymmetry of the piezoresponse loop, albeit with a much smaller magnitude compared to local defects.  相似文献   

15.
Bi(1−x)RE x FeO3 (BREF100x, RE = La, Nd, Sm, Gd) has been investigated with a view to establish a broad overview of their crystal chemistry and domain structure. For x ≤ 0.1, the perovskite phase in all compositions could be indexed according to the rhombohedral, R3c cell of BiFeO3. For Nd and Sm doped compositions with 0.1 < x ≤ 0.2 and x = 0.15, respectively, a new antipolar phase was stabilised similar in structure to PbZrO3. The orthoferrite, Pnma structure was present for x > 0.1, x > 0.15, and x > 0.2 in Gd, Sm, and Nd doped BiFeO3, respectively. For x > 0.2, La doped compositions became pseudocubic at room temperatures but high angle XRD peaks were broad and asymmetric. These compositions have been indexed as the orthoferrite structure. It was concluded therefore that the orthoferrite phase appeared at lower values of x as the RE ferrite, end member tolerance factor decreased. However, the compositional window over which the PbZrO3-like phase was stable increased with increasing end member tolerance factor but was not found as single phase in La doped compositions at room temperature. On heating, the PbZrO3-like phase in BNF20 transformed to the orthoferrite, Pnma structure. T C for all compositions decreased with decreasing A-site, average ionic polarizabilty and tolerance factor. For compositions with R3c symmetry, superstructure and orientational, and translational (antiphase) domains were observed in a manner typical of an antiphase-tilted, ferroelectric perovskite. For the new PbZrO3-like phase orientational domains were observed.  相似文献   

16.
The Hill plot is a well-known criterion of the f-electron element interatomic threshold distance separating the nonmagnetic state from the magnetic state in actinides and lanthanides. We have reinvestigated the Hill plot of Ce compounds using the commercial crystallographic database CRYSTMET, focusing on a relationship between the Ce-Ce distance and the magnetic ordering temperature because a Ce compound with no other magnetic elements rarely has a magnetic ordering temperature that is higher than 20 K. The Hill plot of approximately 730 compounds has revealed that a Ce compound, particularly a ferromagnet, showing a high magnetic ordering temperature would require a short Ce-Ce distance with a suppression of the valence instability of the Ce ion. From the study, we developed interest in Ce2AuP3 with a Curie temperature of 31 K. The ferromagnetic nature of this material has been examined in terms of a doping effect, which suggests a possible increase in magnetic anisotropy energy.  相似文献   

17.
BiFeO3 powder was synthesized in NaCl media at temperature range from 700 to 800 °C, using Bi2O3 and Fe2O3 as raw materials. Effects of calcining temperature and salt ratios on the synthesis of BiFeO3 powder had been investigated. It was found that NaCl effectively promoted the formation of BiFeO3. Almost pure BiFeO3 phase with a very small amount of Bi2Fe4O9 phase was synthesized at 750 °C with salt weight ratios of 1:1. A large amount of BiFeO3 phase decomposed to Bi2Fe4O9 and Bi25FeO39 phase when the temperature was up to 800 °C. In the present method, the calcining temperature played an important role in the formation of BiFeO3 phase. BiFeO3 ceramics derived from molten salt method were prepared and exhibited the higher dielectric constant.  相似文献   

18.
This study reports the effect of La doping on structural, morphological and magnetic characteristics of BiFeO3 synthesized under mild hydrothermal conditions at 200°C for 16 h using the KOH concentration of 4 M. The as-synthesized powders of Bi1−x La x FeO3 for x = 0.05, 0.10, and 0.15 were characterized by X-ray powder diffraction scanning electron microscope and the vibrating sample magnetometer. The formation mechanism of Bi1−x La x FeO3 powders can be expressed by “dissolution-nucleation-crystallization” process. The magnetism of Bi1−x La x FeO3 increased with increase of La content due mainly to increscent suppressing spiral magnetic structure and magnetic contribution of La.  相似文献   

19.
Nb3+-substituted garnet nanoparticles Y3−xNdxFe5O12 (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were fabricated by a sol-gel method and their crystalline structures and magnetic properties were investigated by using X-ray diffraction (XRD), thermal analysis (DTA/TG), and vibrating sample magnetometer (VSM). The XRD patterns of Y3−xNdxFe5O12 have only peaks of the garnet structure and the sizes of particles range from 34 to 70 nm. From the results of VSM, it is shown that when the Nd concentration x ( 1.0, the saturation magnetization of Y3−xNdxFe5O12 increases as the Nd concentration (x) is increased, and gets its maximum at x = 1.0, but when x ( 1.0, the saturation magnetization decreases with increasing the Nd concentration (x), this may be due to the distortion of the microstructure of Y3−xNdxFe5O12, which leads to the decrease of the effective moment formed by Fe3+. Meanwhile, it is observed that with the enhancement of the surface spin effects, the saturation magnetization rises as the particle size is increased.  相似文献   

20.
Epitaxial layers of NaAl3(BO3)4 (NAB) and YAl3(BO3)4〈Yb〉 (YAB〈Yb〉) containing up to 10 at % Yb have been grown by liquid-phase epitaxy on YAB substrates. Their growth kinetics have been studied at relative supersaturations of the high-temperature solution from 2 × 10?2 to 16 × 10?2. The ytterbium concentration in YAB〈Yb〉 has been shown to vary little during the epitaxial process. Near the edges of the substrate, the surface morphology of the layers is complicated by vicinals, which have a spiral form in the case of YAB〈Yb〉. On \(\{ 10\overline 1 1\} \) YAB substrates, homogeneous single-crystal NAB films have been grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号