首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependences of the heat-conductivity coefficient χ and the thermopower 6h of Ag2S are investigated in the range of 4.2–300 K. It is found that the value of 6h sharply increases (6h ∞ T-3) with decreasing T at T < 100 K and passes through a maximum at 16–18 K. The heat-conductivity coefficient passes through a maximum at ≈30 K. The sharp increase in 6h is found to be caused by the effect of long-wavelength-phonon drag of electrons. It is shown that the shift of the 6h and χ peaks, as well as the temperature dependence of the phonon thermopower 6hph ∞ T-3, agrees with the Herring theory.  相似文献   

2.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

3.
Ternary rare-earth sulfides NdGd1+x S3, where 0 ≤ x ≤ 0.08, were prepared by sulfurizing Ln2O3 (Ln = Nd, Gd) with CS2 gas, followed by reaction sintering. The sintered samples have full density and homogeneous compositions. The Seebeck coefficient, electrical resistivity, and thermal conductivity were measured over the temperature range of 300 K to 950 K. All the sintered samples exhibit a negative Seebeck coefficient. The magnitude of the Seebeck coefficient and the electrical resistivity decrease systematically with increasing Gd content. The thermal conductivity of all the sintered samples is less than 1.9 W K−1 m−1. The highest figure of merit ZT of 0.51 was found in NdGd1.02S3 at 950 K.  相似文献   

4.
A Bi-15 at.%Sb alloy, homogenized by equal channel angular extrusion (ECAE) at T = 523 K, has been treated just above its solidus temperature, causing segregation of a secondary Bi-rich phase at the grain boundaries. This process results in an in situ composite. The thermoelectric properties of the composite have been measured in the range of 5 K < T < 300 K. The results are compared with those of the homogeneous alloy. The presence of a Bi-rich phase improves the Seebeck coefficient at T < 50 K, and enhances the electrical conductivity by a factor of 1.4 at T = 300 K up to a factor of 3.4 at T = 50 K; unfortunately, the thermal conductivity also increases by about 50% in the same temperature range. As a result, the figure of merit, Z, is slightly suppressed above T = 110 K, but increases at lower temperatures, reaching a peak value of 4.2 × 10−3 K−1 at T = 90 K. The power factor considerably increases over the whole temperature range, rendering this material suitable as the n-type leg of a cryogenic thermoelectric generator for cold energy recovery in a liquefied natural gas plant.  相似文献   

5.
The heat capacity of single-crystalline samples of Sr8Ga16Ge30 (SGG) and Ba8Ga16Ge30 (BGG) clathrates was measured to investigate the anharmonicity of the encapsulated atoms. At low temperatures, BGG can be well described by a standard Debye model, and the C p/T 3 versus T plot can be fitted with two Einstein temperatures: θ E1 = 42 K and θ E2 = 74 K. On the other hand, SGG shows deviation from the Debye model. Moreover, neither the Einstein model nor the soft potential model (SPM) alone can fit the peak in the C p/T 3 versus T plot, and the peak should be fitted by employing both models. Our results indicate that the effective electron mass is enhanced by the anharmonic phonons.  相似文献   

6.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

7.
We report here the results of magnetotransport and electrical resistivity (ρ) measurements in the temperature range of 4.2–320 K and in the presence of magnetic fields up to 10 T on the Ru-doped, bilayered manganite system, La1.2Ca1.8Mn2−xRuxO7 (0≤x≤1). We find that the Ru doping affects the magnetotransport properties considerably. The ρ versus H data were analyzed by fitting the data to the power-law equation, ρ = ρ0 − αHn. The isothermal magnetoresistance (MR) versus H curves taken up to ± 10 T are highly symmetrical, and their curvature changes from concave up to concave down as the temperature increases. The MR, defined as [ρ(H) − ρ(0)]/ρ(0), is found to increase with Ru doping from 58% to 64% up to x=0.1 and to decrease to 45% for the x=1 sample at 10 K. Analysis of the ρ-T data below 30 K shows that, at low temperature, the system behaves like a disordered metal.  相似文献   

8.
The thermoelectric properties of the Zintl compound YbZn2Sb2 with isoelectronic substitution of Zn by Mn in the anionic (Zn2Sb2)2− framework have been studied. The p-type YbZn2−x Mn x Sb2 (0.0 ≤ x ≤ 0.4) samples were prepared via melting followed by annealing and hot-pressing. Thermoelectric property measurement showed that the Mn substitution effectively lowered the thermal conductivity for all the samples, while it significantly increased the Seebeck coefficient for x < 0.2. As a result, a dimensionless figure of merit ZT of approximately 0.61 to 0.65 was attained at 726 K for x = 0.05 to 0.15, compared with the ZT of ~0.48 in the unsubstituted YbZn2Sb2.  相似文献   

9.
Temperature dependences of the electrical conductivity, Hall coefficient, and thermoelectric power of Zn-doped alloys of the equimolar composition In0.5Ga0.5Sb are studied. The concentration and temperature dependences of the effective mass of holes are determined. It is shown that, for all doped samples at T < 200 K, the charge carriers are scattered by impurity ions and, at T > 200 K, scattering by lattice vibrations also introduces a substantial contribution.  相似文献   

10.
The thermoelectric properties of cobalt-doped compounds Co x Ti1−x S2 (0 ≤ x ≤ 0.3) prepared by solid-state reaction were investigated from 5 K to 310 K. It was found that the electric resistivity ρ and absolute thermopower |S| for all the doped compounds decreased significantly with increasing Co content over the whole temperature range investigated. The increased lattice thermal conductivity of the doped compounds would imply enhancement of the acoustic velocity. Moreover, the ZT value of the doped compounds was improved over the whole temperature range investigated, and specifically reached 0.03 at 310 K for Co0.3Ti0.7S2, being about 66% larger than that of TiS2.  相似文献   

11.
Charge-carrier transport in Ge20As20S60 films has been studied using the transit time method under low-injection conditions at room temperature. It was found that drift mobilities of electrons and holes in Ge20As20S60 films are close to each other, i.e., μ e ≈ μ h ≈ 2 × 10−3 cm2 V−1 s−1 at T = 295 K and F = 5 × 104 V/cm. It was shown that the time dependence of the photocurrent during carrier drift and the voltage dependence of the drift mobility allowed the use of the concept of anomalous dispersive transport. Experimental data were explained using the model of transport controlled by carrier trapping by localized states with energy distribution near conduction and valence band edges described by the exponential law with a characteristic energy of ∼0.05 eV.  相似文献   

12.
We have performed a detailed study of the electrical and thermal conductivities and thermoelectric power behavior of an antiferromagnetic-layer compound of chromium, CuCrS2, from 15 K to 300 K. Unlike previous studies, we find noninsulating properties and sensitive dependence on the preparation method, the microstructure, and the flaky texture formed in polycrystalline samples after extended sintering at high temperatures. Flakes are found to be metallic, with strong localization effects in the conductivity on cooling to low temperatures. The antiferromagnetic transition temperature T N (=40 K) remains essentially unaffected. The Seebeck coefficient is found to be in the range of 150 μV/K to 450 μV/K, which is exceptionally large, and becomes temperature independent at high temperatures, even for specimens with low resistivity values of 5 mΩ cm to 200 mΩ cm. We find the thermal conductivity κ to be low, viz. 5 mW/K cm to 30 mW/K cm. This can be attributed mostly to the dominance of lattice conduction over electronic conduction. The value of κ is further reduced by disorder in Cu occupancy in the quenched phase. We also observe an unusually strong dip in κ at T N, which is probably due to strong magnetocrystalline coupling in these compounds. Finally we discuss the properties of CuCrS2 as a heavily doped Kondo-like insulator in its paramagnetic phase. The combination of the electronic properties observed in CuCrS2 makes it a potential candidate for various thermoelectric applications.  相似文献   

13.
Resonant electron scattering in p-Ag2Te at acceptor concentrations N a < 4.2 × 1016 cm−3 has been observed in the temperature range of 50–80 K. The contribution of the resonant scattering to the temperature dependences of the conductivity σ(T) and thermopower α0(T) has been calculated. It is shown that this contribution exceeds that of charge carrier scattering by acoustic phonons.  相似文献   

14.
Silver doped p-type Mg2Ge thin films were grown in situ at 773 K using magnetron co-sputtering from individual high-purity Mg and Ge targets. A sacrificial base layer of silver of various thicknesses from 4 nm to 20 nm was initially deposited onto the substrate to supply Ag atoms, which entered the growing Mg2Ge films by thermal diffusion. The addition of silver during film growth led to increased grain size and surface microroughness. The carrier concentration increased from 1.9 × 1018 cm−3 for undoped films to 8.8 × 1018 cm−3 for the most heavily doped films, but it did not reach saturation. Measurements in the temperature range of T = 200–650 K showed a positive Seebeck coefficient for all the films, with maximum values at temperatures between 400 K and 500 K. The highest Seebeck coefficient of the undoped film was 400 μV K−1, while it was 280 μV K−1 for the most heavily doped film at ∼400 K. The electrical conductivity increased with silver doping by a factor of approximately 10. The temperature effects on power factors for the undoped and lightly doped films were very limited, while the effects for the heavily doped films were substantial. The power factor of the heavily doped films reached a non-optimum value of ∼10−5 W cm−1 K−2 at 700 K.  相似文献   

15.
In n-Si, intervalley scattering of electrons can be of two types, f scattering and g scattering. With the purpose of establishing the contributions of f- and g-type transitions to intervalley scattering, the piezoresistance of n-Si crystals is studied in the temperature range T = 295–363 K. The initial concentration of charge carriers in the n-Si samples is 1.1 × 1014 cm−3, and the resistivity at 300 K is ρ = 30 Ω cm. As the temperature is increased, the region of leveling-off of the piezoresistance shifts to lower voltages. The characteristic feature of the dependence ρ = ρ(T) plotted in the double logarithmic coordinates (logρ = f(logT)) is the transition from the slope 1.68 to the slope 1.83 at T > 330 K. This is attributed to the substantial contribution of g transitions to intervalley scattering in the high-temperature region. For verification of the interpretation of the dependence ρ = ρ(T), the dependence is calculated on the basis of the theory of anisotropic scattering with consideration for intervalley transitions.  相似文献   

16.
The temperature dependences of the conductivity σ(T) and the switching and memory effects in one-dimensional TlInSe2 and TlInTe2 single crystals have been studied. A specific feature is found in the dependence σ(T) above 333 K, which is related to the transition of crystals to the state with superionic conductivity. It is suggested that the ion conductivity is caused by the diffusion of Tl+ ions over vacancies in the thallium sublattice between (In3+Te22−) and (In3+Se22−) nanochains (nanorods). S-type switching and memory effects are revealed in TlInSe2 and TlInTe2 crystals, as well as voltage oscillations in the range of negative differential resistance. It is suggested that the switching effect and voltage oscillations are related to the transition of crystals to the superionic state, which is accompanied by “melting” of the Tl sublattice. The effect of electric-field-induced transition of TlInSe2 and TlInTe2 crystals to the superionic state is found.  相似文献   

17.
Reflectance spectra of single crystals of Bi2Te3-Sb2Te3 solid solutions containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, and 100 mol % of Sb2Te3 have been studied in the range of 400–4000 cm−1 at the temperature T = 291 K and with orientation of the vector of the electric-field strength E perpendicular to the trigonal axis of the crystal C 3 (EC 3). The shape of the spectra is characteristic of plasma reflection; the spectra include the features in the range 1250–3000 cm−1 corresponding to the optical band gap E g opt. The features become more pronounced as the content of Bi2Te3 is increased to 80 mol % in the composition of the Bi2Te3-Sb2Te3 solid solution. A further increase in the content of Sb2Te3 is accompanied by discontinuities in the functional dependences of the parameters characterizing the plasma oscillations of free charge carriers on the solid-solution composition and also by a sharp increase in E g opt.  相似文献   

18.
Temperature dependences of electrical conductivity σ(T) and permittivity ɛ(T) of one-dimensional (1D) TlGaTe2 single crystals are investigated. At temperatures higher than 305 K, superionic conductivity of the TlGaTe2 is observed and is related to diffusion of Tl+ ions via vacancies in the thallium sublattice between (Ga3+Te22− nanochains. A relaxation character of dielectric anomalies is established, which suggests the existence of electric charges weakly bound to the crystal lattice. Upon the transition to the superionic state, relaxors in the TlGaTe2 crystals are Tl+ dipoles ((Ga3+Te22−) chains) that arise due to melting of the thallium sublattice and hops of Tl+ ions from one localized state to another. The effect of a field-induced transition of the TlGaTe2 crystal to the superionic state is detected.  相似文献   

19.
The usefulness of half-Heusler (HH) alloys as thermoelectrics has been mainly limited by their relatively large thermal conductivity, which is a key issue despite their high thermoelectric power factors. In this regard, Bi-containing half-Heusler alloys are particularly appealing, because they are, potentially, of low thermal conductivity. One such a material is ZrCoBi. We prepared pure and Ni-doped ZrCoBi by a solid-state reaction. To evaluate thermoelectric potential we measured electrical resistivity (ρ = 1/σ) and thermopower (σ) up to 1000 K and thermal conductivity (κ) up to 300 K. Our measurements indicate that for these alloys resistivity of approximately a few mΩ cm and thermopower larger than a hundred μV K−1 are possible. Low κ values are also possible. On the basis of these data we conclude that this system has a potential to be optimized further, despite the low power factors (α 2 σT) we have currently measured.  相似文献   

20.
The results of studying the electrical properties of Hg3In2Te6 crystals irradiated with electrons with the energy E e = 18 MeV and the dose D = 4 × 1016 cm−2 are reported. It is shown that, irrespective of the charge-carrier concentration in the initial material, the Hg3In2Te6 samples acquire the charge-carrier concentration (1.6–1.8) × 1013 cm−3 after irradiation. The phenomenon of Fermi level pinning in an irradiated material is discussed. The initial charge-carrier concentration, which remains virtually unchanged after irradiation and which ensures the high radiation resistance of Hg3In2Te6 crystals, corresponds to a compensated material, similar to an intrinsic semiconductor at T > 260 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号