首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental investigations of heat transfer characteristics and performance enhancement of shell and helical coil water coolers using external radial fins and different shells diameters were conducted. The study aims to enhance the water coolers performance in a trial to improve coil compactness. Two helical coils; one with a plain tube and the other with external radial fins, were tested in four shells of different tube diameters. Refrigerant passing inside the helical coils was used to cool water that enclose/passes in the space between the helical coil and the shell. Tests were conducted under mixed convection heat transfer regimes. Results showed performance and compactness enhancement with the insertion of external radial fins and increasing the shell diameter to helical coil diameter ratio. For nonfinned and finned coils, Nusselt number increased with increasing Reynolds number, Grashof number, and shell diameter. Correlations were predicted to give the Nusselt number in terms of Reynolds number, Grashof number, and shell diameters for finned and nonfinned helical coils. Correlations predictions were compared with present and previous experimental results and good agreements were obtained.  相似文献   

2.
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate.  相似文献   

3.
Helical-wire-coils fitted inside a round tube have been experimentally studied in order to characterize their thermohydraulic behaviour in laminar, transition and turbulent flow. By using water and water–propylene glycol mixtures at different temperatures, a wide range of flow conditions have been covered: Reynolds numbers from 80 to 90,000 and Prandtl numbers from 2.8 to 150. Six wire coils were tested within a geometrical range of helical pitch 1.17 < p/d < 2.68 and wire diameter 0.07 < e/d < 0.10. Experimental correlations of Fanning friction factor and Nusselt number as functions of flow and dimensionless geometric parameters have been proposed. Results have shown that in turbulent flow wire coils increase pressure drop up to nine times and heat transfer up to four times compared to the empty smooth tube. At low Reynolds numbers, wire coils behave as a smooth tube but accelerate transition to critical Reynolds numbers down to 700. Within the transition region, if wire coils are fitted inside a smooth tube heat exchanger, heat transfer rate can be increased up to 200% keeping pumping power constant. Wire coil inserts offer their best performance within the transition region where they show a considerable advantage over other enhancement techniques.  相似文献   

4.
In the present study, the thermal performance and pressure drop of the helical-coil heat exchanger with and without helical crimped fins are studied. The heat exchanger consists of a shell and helically coiled tube unit with two different coil diameters. Each coil is fabricated by bending a 9.50 mm diameter straight copper tube into a helical-coil tube of thirteen turns. Cold and hot water are used as working fluids in shell side and tube side, respectively. The experiments are done at the cold and hot water mass flow rates ranging between 0.10 and 0.22 kg/s, and between 0.02 and 0.12 kg/s, respectively. The inlet temperatures of cold and hot water are between 15 and 25 °C, and between 35 and 45 °C, respectively. The cold water entering the heat exchanger at the outer channel flows across the helical tube and flows out at the inner channel. The hot water enters the heat exchanger at the inner helical-coil tube and flows along the helical tube. The effects of the inlet conditions of both working fluids flowing through the test section on the heat transfer characteristics are discussed.  相似文献   

5.
In many heat exchanger applications, working fluid inside the tubes is subjected to considerable temperature changes. Coiled tubes are used widely in heat exchanger applications due to the enhanced heat transfer rate caused by secondary flows. This study examines the thermal performance of three configurations of coiled tubes of square cross-section, namely, in-plane, helical, and conical coiled tubes, subjected to a large temperature difference between the fluid and the wall and compares it with that of a straight tube of identical cross-section area and length. The concept of figure of merit (FoM) is introduced to compare the heat transfer performance of the various configurations tested. The results indicate that FoM increases as the wall temperature is increased. In addition, the combination of temperature-induced buoyant flow and curvature-induced secondary flow significantly affects the flow behavior and heat transfer performance inside the tubes. The coil pitch in helical and conical tubes has an adverse effect on the heat transfer performance due to shift in vortices generation. The in-plane spiral tube operates at a higher wall temperature and lower Reynolds number, which gives rise to a higher FoM. The highest Nusselt number is obtained for the in-plane spiral tube at higher wall temperature and higher Reynolds number, which shows potential for practical applications.  相似文献   

6.
《Applied Thermal Engineering》2000,20(17):1615-1648
An experimental comparison is made over a large range of Reynolds numbers (from 30 to 30,000) between two shell-and-tube heat exchangers having the same heat-transfer area and same number of bends, but different configurations: one has a helical configuration (regular flow), the other has a chaotic one (chaotic advection flow). Both are composed of 33 bends with circular tube cross section (inside diameter 23 mm) and are immersed in a closed shell. The working fluids are Newtonian with different Prandtl numbers (820, 230, 75 and 6.5) in order to cover the large-Reynolds-number range. The comparison is made by using a criterion L that takes into account thermal performance and energy expenditure. The results show that at low Reynolds numbers, heat transfer is higher and heating more homogeneous for chaotic advection flow, with no increase in energy expenditure. At high Reynolds numbers, the configuration has no influence on heat transfer. When the Prandtl number increases, the heat transfer increases. The flows have also been visualized by laser-induced fluorescence to assess the improvement of mixing in the chaotic configuration.  相似文献   

7.
This paper presents characteristics of turbulent convective heat transfer in a tube fitted with wire coil turbulators. Two different wire coils are introduced: (1) with typical/uniform coil pitch ratio (CR) and (2) with periodically varying three-coil pitch ratio. Various uniform coil pitch ratios (CR = 4, 6, and 8) and two periodically varying coil pitch ratios, the D-coil (decreasing three-coil pitch ratio arrangement) and DI-coil (decreasing/increasing three-coil pitch ratio arrangement), are experimentally investigated in a uniform heat flux tube. The experiments are performed for turbulent flows with Reynolds numbers ranging between 4500 and 20,000. All of the experimental results are compared with those obtained from using the plain tube, while the thermal performance factor is evaluated under an equal pumping power constraint. The experimental results show that the use of the tube fitted with all wire coils leads to an advantage on the basis of heat transfer enhancement over the plain tube with no insert. It is also observed that the uniform-pitch wire coil with higher coil pitch ratio (CR = 8) gives a higher thermal performance factor compared to ones with lower coil pitch ratios (CR = 4 and 6). In addition, for two periodically varying coil pitch ratios, the DI-coil performs with better heat transfer rate than the uniform-pitch ratio (CR = 6) and the D-coil for all Reynolds number ranges studied. The empirical correlations developed in terms of coil pitch ratios (CR), varying coil pitch ratios (D-coil and DI-coil), and Reynolds number are fitting the experimental data within plus or minus 3% and 5% for Nusselt number (Nu) and friction factor (f), respectively. The results of the thermal performance factor for various CR, D-coil, and DI-coil values are also determined.  相似文献   

8.
ABSTRACT

Flow and heat transfer behaviors in the helical oval tube, alternate-twisted-direction helical oval tube and regularly spaced helical oval tubes were numerically investigated. The helical oval tubes with eight oval tube depth ratios (0.03, 0.04, 0.05, 0.06, 0.07, 0.10, 0.15, and 0.20) and nine oval tube pitch ratios (0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0) were examined in turbulent regime, Reynolds number ranged from 5000 to 20,000. The computational results showed that fully developed periodic flow and heat transfer in helical oval tubes commenced at around entrance length to characteristic diameter of 8–9. The decreasing depth ratio and increasing pitch ratio helped to reduce the pressure loss of the tube heat exchanger. The maximum thermal performance of 1.30 was obtained by the use of the helical oval tube with depth ratio of 0.05 and pitch ratio of 0.6 at the lowest Reynolds number of 5000. At similar conditions, typical helical oval tubes offered better heat transfer rate and thermal performance than helical oval tubes with alternate axes and regularly spaced helical oval tubes.  相似文献   

9.
The present study deals with developing a Correlation for heat transfer coefficient for flow between concentric helical coils. Existing Correlation is found to result in large discrepancies with the increase in gap between the concentric coils when compared with the experimental results. In the present study experimental data and CFD simulations using Fluent 6.3.26 are used to develop improved heat transfer coefficient correlation for the flue gas side of heat exchanger. Mathematical model is developed to analyze the data obtained from CFD and experimental results to account for the effects of different functional dependent variables such as gap between the concentric coil, tube diameter and coil diameter which affects the heat transfer. Optimization is done using Numerical Technique and it is found that the new correlation for heat transfer coefficient developed in this investigation provides an accurate fit to the experimental results within an error band of 3–4%.  相似文献   

10.
A physical-empirical model is designed to describe heat transfer of helical coil in oil and glycerol/water solution. It includes an artificial neural network (ANN) model working with equations of continuity, momentum and energy in each flow. The discretized equations are coupled using an implicit step by step method. The natural convection heat transfer correlation based on ANN is developed and evaluated. This ANN considers Prandtl number, Rayleigh number, helical diameter and coils turns number as input parameters; and Nusselt number as output parameter. The best ANN model was obtained with four neurons in the hidden layer with good agreement (R > 0.98). Helical coil uses hot water for the inlet flow; heat transfer by conduction in the internal tube wall is also considered. The simulated outlet temperature is carried out and compared with the experimental database in steady-state. The numerical results for the simulations of the heat flux, for these 91 tests in steady-state, have a R ≥ 0.98 with regard to experimental results. One important outcome is that this ANN correlation is proposed to predict natural convection heat transfer coefficient from helical coil for both fluids: oil and glycerol/water solution, thus saving time and improving general system performance.  相似文献   

11.
The heat transfer characteristics of supercritical carbon dioxide in a horizontal tube with water in the vertical cross flow form were experimentally investigated. The results indicate that the changes of inlet pressure, mass flow rate, and cooling water flow rate have major effects on heat transfer performance. The variations of Reynolds number and Prandtl number were obtained in counter flow and vertical cross flow. The four conventional correlations for convection heat transfer of supercritical carbon dioxide were verified by the experimental data in this study and the correlation agree with this experimental condition was determined.  相似文献   

12.
Limiting current measurements were made at the electrode surfaces fixed flush with the inner wall of a helically coiled circular tube. The measured limiting current facilitated the computation of wall-liquid mass transfer coefficients. The mass transfer data were obtained for the flow of electrolyte through the helical coil in the absence and presence of packed solids. The mass transfer coefficient was found to decrease with increasing p/D ratio and approached minimum for straight tube case. The mass transfer data were correlated in terms of Colburn factor jD, expressed as a function of Reynolds number Re and torsion number Tn obtained as jD=0.34Re−0.58Tn0.17. Analysis of the experimental data obtained in case of packed coiled tubes of circular cros- section revealed that the effect of p/D ratio on pressure drop was observed to be insignificant. The effect of pitch on mass transfer coefficient in case of packed helical coils was found to be marginal.  相似文献   

13.
T. R. Bott 《传热工程》2013,34(3):43-49
The flow field in shell-and-tube heat exchangers with helical baffles was measured using laser Doppler anemometry (LDA). The influence on the velocity distribution, impulsive velocity by helix inclination angle, and flow rate was investigated. The influence on heat exchanging capability and flow resistance on velocity distribution was also investigated. The dimensions of the heat exchanger shell used in these experiments were 200 2 6 2 3,000 mm (inner diameter 2 wall thickness 2 length). The heat exchanger was made of organic glass and the tube bundle consisted of 52 tubes with external diameter of 15 mm. Six different inclination angles were designed in double-helix style: 30°, 35°, 40°, 42°, 45°, and 50°. The working flow medium under normal temperature was service water. Generally, the linear velocity and impulsive velocity will increase with decreasing helix inclination angle, which promotes the heat exchanging capability. With flow volume increasing, the velocity distribution along the diameter increases on average. The pressure drop increases with decreasing helix inclination angle. For all of the helix inclination angles tested, the minimum pressure loss took place at a certain Reynolds number; and at different helix inclination angles, the Reynolds number at which the minimum pressure loss occurs is different. In general, it was concluded that the optimum helix inclination angle depends on the Reynolds number of the working fluid on the shell side of heat exchanger.  相似文献   

14.
The present study introduces a new method in electronic descaling (ED) technology. In the proposed method, the ED apparatus consisted of a longitudinally positioned solenoid coil installed on an outer surface of a pipe. When electric current flows through the electric coils a magnetic field is generated whose direction is perpendicular to that of the flow direction. Experiments were performed at various Reynolds numbers. In order to monitor fouling at the heat transfer test section, the pressure drop across the test section and the overall heat transfer coefficient were measured as a function of time. The present study demonstrated an enhanced descaling effect of the longitudinally positioned solenoid coil while effectively inhibiting a formation of scales at slow flow conditions.  相似文献   

15.
In the present study an experimental investigation of the mixed convection heat transfer in a coil-in-shell heat exchanger is reported for various Reynolds and Rayleigh numbers, various tube-to-coil diameter ratios and dimensionless coil pitch. The purpose of this article is to assess the influence of the tube diameter, coil pitch, shell-side and tube-side mass flow rate over the performance coefficient and modified effectiveness of vertical helical coiled tube heat exchangers. The calculations have been performed for the steady-state and the experiments were conducted for both laminar and turbulent flow inside coil. It was found that the mass flow rate of tube-side to shell-side ratio was effective on the axial temperature profiles of heat exchanger. The results also indicate that the ? − NTU relation of the mixed convection heat exchangers was the same as that of a pure counter-flow heat exchanger.  相似文献   

16.
The aim of this study is to utilize waste thermal energy from industries into useful heat for water and air heating. In this paper, the thermal modeling and performance of three fluid heat exchangers (TFHE) have been experimentally investigated. The TFHE considered here is an enhanced version of the double-pipe heat exchanger. A novel TFHE having fin (1 mm thin copper wire of 10 mm pitch) acts as a roughness element, which is wrapped on the helical coil's outer surface for increasing heat transfer (HT) rate and the turbulence effect for normal water, and this outer surface finned helical coil is inserted between two concentric straight tubes. The innermost tube carries atmospheric air, the finned helical coil tube carries waste hot fluid while normal water flows in the inner annulus of the outermost tube. The coiled-side Reynolds number is varied in the range of 7000–30,000, while the curvature ratio of 0.1315, pitch-to-inside diameter ratio of 2.88 and wire-to-tube diameter of the helical tube is kept constant. A counterflow arrangement has been made for experimentation. Nusselt number is calculated using the traditional Wilson plot method that is compared and validated with results available in the literature. The overall HT coefficient is found to increase by increasing the volume flow rate of fluids, while effectiveness decreases or increases depending on residence time and capacity ratio. The percentage increment in the Nusselt number, maximum friction factor, overall HT coefficient between waste hot fluid to normal water, effectiveness is found to be 21.10%–23.88%, 90.91%, 3.40%–29.45%, 3.40%–25.33%, respectively, for the coil side. TFHE is thus proposed for heating water and space simultaneously.  相似文献   

17.
Metal-hydride (MH) reactors are one of the most promising approaches for hydrogen storage because of their low operating pressure, high storage volumetric density and high security. However, the heat transfer performance of the MH reactor for high hydrogenation rate is inferior. In this study, the heat transfer and hydrogen absorption process of metal hydride tank performance in Mg2Ni bed is analyzed numerically using commercial ANSYS-FLUENT software. The MH reactor is considered a cylindrical bed including a helical tube along with a central straight return tube for the cooling fluid. The effects of geometrical parameters including the tube diameter, the pitch size and the coil diameter as well as operational parameters on the heat exchanged and hydrogen absorption reactive time are evaluated comprehensively. The results showed that the helical heat exchanger along with central return tube could effectively improve heat exchanged between the cooling fluid and the metal alloy and reduce the temperature of the bed results in a higher rate of hydrogen absorption. For a proper configuration and geometry of the helical coil heat exchanger with a central return tube, the absorption reaction time is reduced by 24% to reach 90% of the storage capacity. After the optimization study of the geometrical parameters, a system with the heat exchanger tube diameter of 5 mm, coil diameter of 18 mm and the coil pitch value of 10 mm is recommended to have lower hydrogen absorption time and higher hydrogen storage capacity. The presented MH reactor can be applied for improvement of heat exchange and absorption process in industrial MH reactors.  相似文献   

18.
Heat transfer enhancement and pressure drop increasing during evaporation of R-134a due to the presence of coiled wire insert inside a horizontal evaporator was studied experimentally. The test evaporator was an electrically heated copper tube of 1200 mm length and 7.5 mm inside diameter. Helically wire coils with different wire diameters of 0.5, 0.7, 1.0 and 1.5 mm and different coil pitches of 5, 8, 10 and 13 mm were made and used in full length of the test evaporator. For each inserted tube and also the plain tube, several test runs were carried out with different mass velocities and heat fluxes. From analysis of acquired data, it was found that the coiled wire inserts enhance the heat transfer coefficient but with a higher penalty due to the increasing of pressure drop, in comparison to that for the plain flow. An empirical correlation has been developed to predict the heat transfer coefficient during evaporation inside a horizontal tube in the presence of a coiled wire insert.  相似文献   

19.
Numerical investigations are performed using finite volume method to study laminar convective heat transfer and nanofluids flows through a circular tube fitted with helical tape insert. The wall of tube was subjected to a uniform heat flux boundary condition. The continuity, momentum and energy equations are discretized and the SIMPLE algorithm scheme is applied to link the pressure and velocity fields inside the domain for plain tube. Four different twist ratios of 1.95–4.89, two different types of nanoparticles, Al2O3 and SiO2 with different nanoparticle shapes of spherical, cylindrical and platelets, and 0.5–2.0% volume fraction in base fluid (water) and nanoparticle diameter in the range of 20–50 nm were used to identify their effect on the heat transfer and fluid flow characteristics through a circular tube fitted with helical tape insert geometries. The results indicate that the four types of nanofluid achieved higher Nusselt number than pure water. Nanofluid with Al2O3 particle achieved the highest Nusselt number. For all the cases studied, the Nusselt number increased with the increase of Reynolds number and with the decrease of twist ratio of helical tape insert.  相似文献   

20.
An experiment has been conducted in detail to study the turbulent heat transfer in horizontal helically coiled tubes over a wide range of experimental parameters. We found that the enhancement of heat transfer in the coils results from the effects of turbulent and secondary flows. With Reynolds number increasing to a high level, the contribution of the secondary flow becomes less to enhance heat transfer, and the average heat transfer coefficient of the coil is closer to that in straight tubes under the same conditions. The local heat transfer coefficients are not evenly distributed along both the tube axis and the periphery on the cross section. The local heat transfer coefficients on the outside are three or four times those on the inside, which is half of the average heat transfer. A correlation is proposed to describe the distribution of the heat transfer coefficients at a cross section. The average cross-section heat transfer coefficients are distributed along the tube axis. The average value at the outlet section should not be taken as the average heat transfer coefficient. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 395–403, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号