首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooperative relaying permits one or more relays to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in independent but non identically distributed (i.n.i.d.) Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for a specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.  相似文献   

2.
李易  邱玲  柳卫平 《通信技术》2010,43(4):56-58
由于协作通信技术能够抵抗信道衰落的影响,提供分集增益,成为目前研究热点之一。针对传统多中继译码转发协作通信中,所有潜在中继均参与协作从而导致系统的低资源利用率问题,提出了一种基于信道容量增益的中继节点选择策略。仿真结果表明,该策略只需选择一半的中继节点数就能获得和最优中继选择方法非常相近的系统性能,同时降低了系统的功率损耗和实现复杂度。  相似文献   

3.
Greedy transmission scheduling achieves great capacity by maximally exploiting independent time-varying channels across different mobile users. The improvement in capacity, however, depends on the degree of completeness of the channel quality information (CQI) fed back from the receiver to the transmitter. To be motivated by an insight that too many CQI feedbacks may rather impair the capacity gain, due to causing congestion in feedback link, this letter proposes a quality-based CQI reporting (QBR) scheme where the CQIs are fed back to the transmitter only for receivers whose signal quality is above a predefined threshold. The capacity is provided in terms of the threshold and feedback-error rate. The results show that QBR achieves outstanding performance when the feedback error is present. In addition, it quickly approaches an unimpaired ideal capacity, as the number of users increases if the error is not assumed.  相似文献   

4.
OFDMA uplink frequency offset estimation via cooperative relaying   总被引:1,自引:0,他引:1  
Frequency offset estimation for an orthogonal frequency-division multiple access (OFDMA) uplink for amplify-and-forward (AF) relays and a new type of relay (R) called decode-and-compensate-and-forward (DcF) relays are studied. Multiple relays are considered, and the relay with the best S rarr R channel is chosen to perform re-transmission, where S and R represent the source and relay nodes, respectively. Frequency offsets due to the mismatches between the transmitter and receiver oscillators are considered, and without considering the effect of Doppler shift, both S rarr D and S rarr R rarr D links have the same frequency offset, where D represents the destination. Thus, by using these two transmissions, D generates two frequency offset estimates, which are combined to minimize the mean square error (MSE). Power allocation between S and R can be adaptively adjusted to optimize the cooperative scheme in terms of frequency offset error variance. When channel state information (CSI) is available at each mobile node, a scheme where the relays adaptively switch between the cooperative and conventional (no relaying) transmissions is proposed to optimize the frequency offset estimation. Although the frequency offset estimation accuracy in the DcF mode is somewhat worse than the AF mode, both modes outperform the conventional transmission. However, DcF (or decode-and-forward (DF)) relays outperform AF relays in terms of channel capacity and bit error rate (BER).  相似文献   

5.
Spatial diversity in wireless networks can be attained by exploiting the broadcast nature of wireless transmission without the need of multiple antennas in individual device, leading to the implementation of cooperative communication. While most prior works focused on the single source—destination scenario, it should be more realistic to consider how to induce cooperation among multiple source‐destination pairs assisted by multiple relays. In such a case, multiple access interference (MAI) may present due to asynchronous transmissions of the users and relays. In this paper, a cooperative network architecture based on orthogonal complementary (OC) codes inherently immune to MAI is proposed. To efficiently utilize the scarce radio spectrum and codes, a centralized medium access control (MAC) protocol is proposed to coordinate the code assignment and channel access among users and relays. We theoretically analyze the bit error rate (BER) performance of the proposed OC coded cooperative network over multipath Rayleigh fading channel. The performance gain resulted from different numbers of relays is investigated, and compared with a time division multiple access (TDMA) based cooperative scheme. We show that the proposed OC coded cooperative network performs well in the presence of timing offset, and thus is well suited for asynchronous uplink transmission with cooperative relaying. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider secure communications of one source‐destination pair in the presence of one eavesdropper, when full‐duplex decode‐and‐forward cooperative relays operate to enhance physical layer security. While the conventional half‐duplex relay receives the signal from the source and forwards the re‐encoded signal to the destination in two separated time slots, the full‐duplex relay (FDR) performs the transmission and reception at the same time, which can ideally double the secrecy capacity. However, because of the simultaneous transmission and reception, each FDR suffers from both its own self‐interference and the interference from the other cooperative FDRs. When the conventional cooperative relaying schemes are used in full‐duplex relaying, it is obviously expected that the self‐interference signals cause severe degradation of the secrecy capacity. Here, we propose an iterative transmit power allocation and relay beamforming weight design scheme for cooperative FDRs to enhance the secrecy rate as well as suppress the self‐interference signals. Numerical results present that the FDRs with the proposed scheme significantly improve the secrecy rate compared with the conventional half‐duplex relays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Wireless networks contain an inherent distributed spatial diversity that can be exploited by relays. Relay networks can take advantage of the broadcast-oriented nature of wireless transmission, but require more radio resource to transmit data for their multi-hop traits. Fortunately, incremental relaying technique, which can choose direct or multi-hop transmission adaptively, can efficiently utilize resource. In this article, the incremental transmission with amplify-and-forward (AF) relays is focused on. A practical hybrid-automatic retransmission request (HARQ) protocol is designed, and the related optimal relay selection strategy is proposed. To analyze the cooperative diversity of system with the proposed protocol, the capacity lower bound is deduced. Simulation and analytical results indicate that by adopting the optimal relay selection strategy, the system with the proposed HARQ protocol can achieve an order of cooperative diversity that equals the aggregated number of the relay and source nodes.  相似文献   

8.
In this paper, we investigate the diversity, capacity and complexity issues of cooperative Zero-Padding (ZP)-Orthogonal Frequency Division Multiplexing (OFDM) communication. We consider cooperative ZP-OFDM communication over a multipath Rayleigh channel and with multiple Carrier Frequency Offsets (CFOs) existing at different relays. We use a cooperative tall Toeplitz scheme to achieve full cooperative and multipath diversity, while simultaneously combat the CFOs. Importantly, this full diversity scheme only requires Linear Equalizers (LEs), such as Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) equalizers, an issue which reduces the system complexity when compared to a Maximum-Likelihood Equalizer (MLE) or other near-MLEs. Theoretical analysis of the proposed cooperative tall Toeplitz scheme is provided on the basis of the analytical upper bound of the channel orthogonality deficiency derived in this paper. Utilizing only low-complexity linear equalizers, theoretical analysis and simulation results show that the proposed Toeplitz scheme achieves the full cooperative, multipath and outage diversity.  相似文献   

9.
本文对协作式中继辅助的多输入多输出(Multiple-input Muhiple-output,MIMO)通信中的联合波束成形问题进行了研究.首先推导了接收信噪比的下界,并基于该下界建立了联合波束成形的数学模型;然后推导了分布式波束成形的最优方案;最后设计了联合优化信源的多天线波束成形和协作式中继的分布式波束成形的算法,从而获得联合波束成形方案.计算机实验仿真表明所提联合波束成形方案获得明显的性能增益.  相似文献   

10.
When the sizes of terminals are limited, cooperative relay networks are recommended as promising virtual MIMO systems to improve the performances of wireless communication systems in literature. Accordingly, some comparisons on the performances of different systems are useful to guide the selection and deployment of cooperative relay systems in field applications. In this paper, we compare the outage probabilities of cooperative relay networks of different topologies (different numbers of antennas used at a transmitter and relays used in a system), as well as the outage probabilities of the MISO systems. We propose an aggregated channel mode, which combines the power gain obtained from the reduction of path loss through the deployment of relays, and the flat fading caused by multi-path propagation. During the evaluation of the performances of different systems, we apply information theory in the calculation of ergodic capacities and consider the requirement on wireless resources in the estimation of outage probabilities. Numerical simulation shows that (1) cooperative networks with multiple relays outperform those with multiple antennas; (2) only when the power gain is included, the performances of cooperative relay networks are comparable with their counterparts in direct transmission; (3) the performances are significantly affected by the locations of relays.  相似文献   

11.
Fu  Xiaomei  Li  Jialun  Chang  Shuai 《Wireless Networks》2020,26(5):3069-3081

Cooperative relaying is an effective technology to improve the secrecy capacity of physical-layer (PHY) security. Multiple relays can help further exploit the spatial diversity of cooperative networks. In power-limited networks, relay selection scheme is crucial important for it determines whether the optimal relay combination can be selected. This paper studies the problem of multi-relay selection in amplify-and-forward compressed sensing (AF-CS) networks, in which relays help all sources amplify and forward the signal, and the transmission matrix is used as the measurement matrix to encrypt the information. A self-organizing algorithm based on stochastic learning automata (SLA) is proposed for the AF-CS network to look for the best relay combination in a self-learning and self-optimizing way, and named “learning-based multi-relay selection algorithm” (L-MRS). In L-MRS, the destination node is self-optimizing to select the best state autonomously, and relays are self-organizing to decide whether to join the cooperation or not according to the environment feedback. Simulation studies verify the L-MRS’s is able to select the optimal relay-combination in a very stable way, and can get higher secrecy capacity compared with the coalition formation game method.

  相似文献   

12.
谢显中  张鑫  雷维嘉 《信号处理》2011,27(3):387-394
在协作无线通信系统中,中继节点的移动会大大降低系统的性能,目前该方面的结果很少。本文探讨分布式环境中协作分集的移动中继选择算法,在放大转发(AF)协作通信模式下,给出了基于信道统计状态信息的功率分配和中继的动态选择策略。针对单中继情况提出了中继切换方案,针对多中继情况提出了动态剔除、补充中继的方案,并导出了分集增益及系统容量的计算公式。通过模拟仿真分析,该方案能有效的降低中断概率,提高系统分集增益,扩大系统容量,实现良好的整体性能。   相似文献   

13.
This paper presents joint power allocation and interference mitigation techniques for the downlink of spread spectrum systems which employ multiple relays and the amplify and forward cooperation strategy. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to an individual power constraint and the design of linear receivers for interference suppression. We derive constrained minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problem efficiently, we develop joint adaptive power allocation and interference suppression algorithms that can be implemented in a distributed fashion. The proposed stochastic gradient (SG) and recursive least squares (RLS) algorithms mitigate the interference by adjusting the power levels across the relays and estimating the parameters of the linear receiver. SG and RLS channel estimation algorithms are also derived to determine the coefficients of the channels across the base station, the relays and the destination terminal. The results of simulations show that the proposed techniques obtain significant gains in performance and capacity over non-cooperative systems and cooperative schemes with equal power allocation.  相似文献   

14.
Cooperative spatial multiplexing (CSM) system has played an important role in wireless networks by offering a substantial improvement in multiplexing gain compared with its cooperative diversity counterpart. However, there is a limited number of research works that consider the performance of CSM systems. As such, in this paper, we have derived exact performance of CSM with amplify‐and‐forward and decode‐and‐forward relays in terms of outage capacity and ergodic capacity. We have shown that CSM systems yield a unity diversity order regardless of the number of antennas at the destination and the number of relays in the networks, which is the direct result of diversity and multiplexing gain trade‐off. Our analytical expressions are corroborated by Monte‐Carlo simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
文章研究了多中继放大转发协作分集系统中的功率分配和中继位置联合优化问题。利用信道的统计状态信息,在总功率一定的条件下,以最大化系统的信道容量为目标,推导了多中继和选择中继两种模型下基于高信噪比近似的联合优化算法的闭式解。理论分析和仿真验证表明,提出的算法大大提高了传统的等功率分配方案下系统的性能。  相似文献   

16.
Cooperative spectrum sensing, a kind of spectrum sensing scheme in cognitive radio (CR), uses multiple CR relays. To increase performance, this study uses multi‐antenna CR relays and beam‐forming reception. The required bandwidth for reporting channels in cooperative spectrum sensing is crucial. Two‐stage cooperative spectrum sensing is proposed to increase performance without increasing the required bandwidth. The cooperative spectrum sensing is also optimized to allow the CR networks to facilitate the best decision‐making. This study determines the detection performance when beam‐forming reception is used. Numerical simulations are used to validate the effectiveness of the method. It is shown that beam‐forming reception outperforms square‐law combining (SLC) for low SNR values. This study proposes a 2‐stage cooperative spectrum sensing method, which uses multi‐antenna CR relays and beam‐forming reception. The cooperative spectrum sensing is also optimized to allow the CR networks to facilitate the best decision‐making. Numerical simulations are used to validate the effectiveness of the method.  相似文献   

17.
基于认知无线电系统的协作中继分布式功率分配算法   总被引:2,自引:0,他引:2  
协作通信与直接通信相比能够显著地提高系统性能。协作通信中的一个关键问题是管理中继节点及有效地进行功率分配。尤其对于频谱共享的认知无线电(Cognitive Radio,CR)系统,协作方案的设计不仅要最大限度地提高认知网络协作的功率效率,而且需要最小化对主系统的干扰。该文针对认知无线电系统的协作通信问题,在多个中继节点与源节点协同通信的场景下,提出了一种基于放大转发(Amplify and Forward,AF)模式下的功率分配及联合优化算法,在保证主系统传输性能不受影响的前提下,提高认知系统的传输速率。仿真结果表明该文提出的自适应协作传输方案,和直接传输及等功率传输方案相比获得了进一步的性能增益,中断概率显著下降。  相似文献   

18.
俞菲  胡莹  巴特尔  杨绿溪 《信号处理》2013,29(12):1660-1669
本文针对多中继辅助通信系统,将系统建模为一个两跳通信链路,并进行了系统容量分析。针对两种特殊情况:用户端接收噪声方差远小于中继端接收噪声方差和中继端接收噪声方差远小于用户端接收噪声方差的情况,本文具体给出了系统传输容量上限与协作中继个数之间的关系。基于容量的分析,本文设计了两种中继选择策略。在第一种情况下,根据中继与用户间的信道特征值对多路数据流分别选取不同的中继子信道进行传输;在第二种情况下,选择一个信道条件最好的中继完成多路数据流的并行传输。仿真分析表明,不同的信道环境需要选择不同的中继选择策略。   相似文献   

19.
In this paper, a scheme that exploits cooperative diversity of multiple relays to provide physical layer security against an eavesdropping attack is concerned. Relay‐based cognitive radio network (CRN) faces issues multiple issues other than the same as faced by conventional wireless communications. If the nodes in a CRN are able to harvest energy and then spend less energy than the total energy available, we can ensure a perpetual lifetime for the network. In this paper, an energy‐constrained CRN is considered where relay nodes are able to harvest energy. A cooperative diversity‐based relay and subchannel‐selection algorithm is proposed, which selects a relay and a subchannel to achieve the maximum secrecy rate while keeping the energy consumed under a certain limit. A transmission power factor is also selected by the algorithm, which ensures long‐term operation of the network. The power allocation problem at the selected relay and at the source also satisfies the maximum‐interference constraint with the primary user (PU). The proposed scheme is compared with a variant of the proposed scheme where the relays are assumed to have an infinite battery capacity (so maximum transmission power is available in every time slot) and is compared with a scheme that uses jamming for physical layer security. The simulation results show that the infinite battery‐capacity scheme outperforms the jamming‐based physical layer security scheme, thus validating that cooperative diversity‐based schemes are suitable to use when channel conditions are better employed, instead of jamming for physical layer security.  相似文献   

20.
In multiuser cooperative relay networks, cooperative diversity can be obtained with the help of relays, while multiuser diversity is an inherent diversity in multiuser systems. In this letter, the performance analysis of multiuser diversity in cooperative multi-relay networks is presented. Both the case of all relay participating and the case of relay selection are considered. We first derive asymptotic expressions of outage probability and symbol error probability for amplify-and-forward (AF) and decode-and-forward (DF) protocols with joint multiuser and cooperative diversity. Then, the theoretical analysis are validated by Monte Carlo simulations. Both the theoretical analysis and simulations show that a multiuser diversity order of K and a cooperative diversity order of M+ 1 can be achieved simultaneously for both AF and DF protocols (where K is the number of accessing users and M is the number of available relays). These demonstrate that the multiuser diversity can be readily combined with the cooperative diversity in multiuser cooperative relay networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号