首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.  相似文献   

2.
Nine asphalt concrete overlays were prepared using three different mix designs: Type C, 12.5 mm Superpave, and Coarse Matrix High Binder Hot-Mix (CMHB-C) mixtures and three different coarse aggregate: siliceous gravel, quartzite and sandstone. Pavement overlays were placed on field sections constructed along IH-20 in Harrison County, Texas. Field sections included each of the nine different surface mixture types. The base course was the same for all surface mixtures and was designed with 90% limestone and 10% local field sand. For all mixtures including the base course, PG 76-22 binder was used. Three pavement condition surveys were conducted on the outside lanes of eastbound and westbound field sections; immediately after, after two years, and after three years of the construction of asphalt concrete pavement system. IRI values were estimated from the left and right wheel paths. Each data-set was analysed separately to compare the pavement smoothness of different asphalt concrete overlays. Section 3 (Superpave quartzite mix) in the westbound lanes and Section 4 (CMHB-C gravel mix) in the eastbound lanes showed the best ride qualities. A paired t-test was conducted for each section in order to assess changes in IRI values with time under real traffic conditions. Test results and statistical analyses indicated that except for the IH-20 westbound left lanes of field Section 3 (i.e. Superpave quartz mix) the IRI values of the asphalt concrete overlays were time stable over the research period of three years.  相似文献   

3.
为了确定碳纤维导电沥青混合料的合理碳纤维掺量,选用短切聚丙烯腈(PAN)基碳纤维作为导电相材料,通过大量室内试验分析了碳纤维掺量对导电沥青混合料AC-13C的马歇尔性能和导电性能的影响,并验证了其路用性能。结果显示,相同油石比下,随着碳纤维掺量的增加,导电沥青混合料的毛体积密度、沥青饱和度和马歇尔稳定度呈先增后减的变化趋势,空隙率和矿料间隙率呈先减后增的变化关系,而流值一直增大。通过对碳纤维掺量不同范围的沥青混合料分别采用AC、调整和SMA的技术标准,确定了合理的最佳油石比,且最佳油石比与碳纤维掺量之间呈良好的半对数相关关系。同时,在最佳油石比下,导电沥青混合料电阻率的对数与碳纤维掺量之间呈良好的幂函数关系,且0.1%碳纤维掺量的沥青混合料的各项路用性能指标均达到气候条件要求高的改性沥青混合料和SMA的技术要求。因此,适宜的碳纤维掺量对导电沥青混合料可起到优良的增强作用,并形成稳定的导电网络,综合各项性能和导电发热的技术要求,建议碳纤维的适宜掺量取0.1%。  相似文献   

4.
复合式路面是指在水泥混凝土路面上加铺沥青薄层的设计组合,他和普通的水泥混凝土路面或沥青路面相比具有很多的优势,本文结合隆百高速路面工程的实际,对28cm水泥混凝土+1cm橡胶沥青应力吸收层+4cm橡胶沥青磨耗层的复合式路面施工技术进行研究,主要内容包括混凝土的施工技术,界面的清理、应力吸收层的作用、橡胶沥青磨耗层的施工等等,通过工程实践,收获一些施工经验,使国内首次大面积应用的“白加黑”工程得以顺利实施。  相似文献   

5.
Strain distribution of asphalt pavement varies in transverse and longitudinal directions, and distresses, such as cracks, ruts and settlements, often occur randomly, which can be efficiently measured by distributed optical fibre sensing technology. As bare optical fibre is weak to resist shear and torsion forces during pavement construction, the protective technique is required. Therefore, a flexible asphalt-mastic packaged optical fibre sensor was developed in this research for distributed strain monitoring of asphalt pavement. Theoretical analysis on strain transfer of the optical fibre-based sensors embedded in asphalt pavement was conducted to improve the design of the protective layer and remove the strain transfer error. Afterwards, laboratory tests on the asphalt concrete beam were carried out to validate the performance of the sensor. Finally, the proposed sensors were applied to detect the in situ performance of urban asphalt pavement under temperature and traffic loads. The results indicate that the proposed optical fibre sensor detects the distributed strain of asphalt pavement effectively, and the in situ data show significant effects of temperature and traffic loads on asphalt concrete course. This research contributes to the full-scale monitoring and health assessment of large-span pavement.  相似文献   

6.
Oxidative aging of asphalt is a primary cause of binder hardening in pavements, thus contributing to various forms of pavement failures. An essential element of predicting long-term pavement performance is to understand binder oxidative aging and its effect on engineering properties. Five asphalt binders were evaluated relative to their changes in engineering and chemical properties in pavement service. Laboratory rolling thin-film oven test (RTFOT) and pressure aging vessel (PAV) test were conducted to simulate the in-situ pavement aging. In addition, a test road was constructed for this study to investigate the real aging process in the field. Comparable data were shown between field binders and laboratory binders aged at temperature 60°C under pressure 20 kg/cm2. The aging time of asphalts in PAV depended on how long pavements were used in the field. This paper was to determine the temperature and pressure used for PAV to simulate aging condition in the field. A good correlation between field-service and laboratory aging during test road project was found. An aging model was proposed to predict the changes in paving binder’s properties during field age hardening. Results were shown to give a close fit with experimental data from both laboratory and field aging tests. This model allowed highway engineers to quantify two essential characteristics of binder aging: the aging rate and the ultimate degree of changes in binder properties due to aging.  相似文献   

7.
针对钢桥面铺装工程中普遍采用的改性沥青(Stone Matrix Asphalt,SMA)、浇筑式沥青(Guss asphalt,GA)、环氧沥青(Epoxy asphalt,EP)混合料双层铺装结构,进行了循环车载作用下钢桥面与沥青混凝土铺装疲劳损伤特性理论分析与试验研究。基于疲劳损伤度,研究了钢桥面铺装疲劳损伤失效行为和疲劳开裂过程中损伤场、应力和应变场动态演变机制,推导出疲劳失效时的损伤场、应力和应变场计算表达式,并给出钢桥面铺装疲劳寿命理论公式。以三座钢箱梁桥桥面铺装(润扬长江大桥2005,南京长江三桥2005,苏通大桥2008)为例,对不同铺装结构组合方案下的复合梁进行疲劳试验分析和使用寿命理论预测。实例研究结果表明,钢桥面铺装疲劳损伤失效行为预估模型合理可行;相较于改性沥青、浇筑式沥青,环氧沥青混合料具有较强高的强度低变形能力,更适合于大跨径钢桥面铺装抗疲劳的设计要求;由环氧沥青混合料组合而成的“双层环氧沥青混凝土”和“浇注式沥青混凝土(下层)+环氧沥青混凝土(上层)”的抗疲劳性能优于其它沥青混合料铺装结构组合方案,同等厚度组合情况下疲劳使用寿命可延长1倍~2倍以上;“双层环氧沥青混凝土”已应用于润扬长江大桥、南京长江三桥和苏通长江大桥钢桥面工程,并已成功运行10年以上,其跟踪观测结果良好。  相似文献   

8.
Accelerated pavement testing (APT) is an effective testing procedure to evaluate asphalt pavements. With APT it is possible to determine and measure the structural response and pavement performance under a controlled, accelerated damage accumulation in a compressed period of time. However, different types of APT technologies can lead to different results. Full-size loading devices simulate road traffic accurately, but are expensive, while down-scaled size simulators are cost effective, nevertheless further away from reality. In this work, two types of APT mobile load simulators with different loading characteristics are compared with respect to pavement response in the field and in the laboratory. The MLS10 is a full-size simulator, whereas the MMLS3 is a one-third scale device. The relationship between the devices was studied in terms of the measured strains induced by both machines in the same pavement. Therefore, a testing field was instrumented with strain gauges and first trafficked with MLS10. Later, a slab of the instrumented pavement was cut off the road and tested in the laboratory with the smaller MMLS3. Furthermore, the structure of the pavement was modelled with a viscoelastic finite element method model and the moving loads of both machines were simulated considering size, speed and approximate footprints of their tires. As for the pavement materials, the properties of the different asphalt layers were determined in the laboratory. Experimentally acquired strain data were used to validate the models. Stress fields under different loading and environmental conditions were analysed and compared. The evaluation shows that the models can predict the pavement response under different loading conditions. However, they still need to be improved to increase the accuracy under different conditions. Further, the analysis of the strains show that both load simulators induce a different stress–strain situation and scaling of the pavement should be considered.  相似文献   

9.
钢渣沥青混凝土技术及其应用研究进展   总被引:1,自引:0,他引:1  
李超  陈宗武  谢君  吴少鹏  肖月 《材料导报》2017,31(3):86-95, 122
钢渣常被当成工业废弃物处置,但其碱性强、棱角丰富,兼具有优异的力学特性,可以改善沥青混凝土的抗水损害、抗高温变形以及耐磨和抗滑等性能,被认为是可替代天然矿质集料的理想筑路材料。近年来道路建设对集料用量的高需求与天然集料短缺之间的矛盾越来越突出,钢渣沥青混凝土技术因而成为备受关注的热点。概述了钢渣的材料特性以及钢渣沥青混凝土的设计与性能,介绍了钢渣沥青混凝土的实际应用情况,研究了钢渣沥青混凝土长期应用后的路面性能变化,最后对钢渣沥青混凝土未来的发展趋势进行了展望。  相似文献   

10.
Abstract

To evaluate the feasibility of using Recycled Concrete Aggregates (RCA) in asphalt mixtures, the coarse RCA and fine RCA were prepared as a partial replacement of the natural aggregates (NA). Different amounts of replacement of NA with RCA were investigated, and the mechanical properties and pavement performance of asphalt mixtures containing different proportions of RCA were analysed based on laboratory tests. The results indicated that with increasing the RCA percentage, the optimum asphalt content increased and the bulk density of mixtures decreased as well. Mixtures containing 40% coarse RCA or 20% fine RCA both showed satisfactory performance. Besides, the mixture containing 40% fine RCA had the highest asphalt content, but gave much better performance compared to the virgin mix except for its bad resistance to permanent deformation. Finally, the pavement performance of mixtures containing 60% coarse RCA and 50% coarse RCA were unacceptable.  相似文献   

11.
Agencies are moving towards performance-based design methodologies for asphalt pavements, and different methods to evaluate the asphalt performance in the laboratory have been developed. The laboratory performance can be evaluated at the mix design and/or production stages. A good understanding of differences in the behaviour of mixtures produced in the laboratory and plant is required to assess anticipated field performance at the mix design stage. The objectives of this paper are to compare the measured properties of plant-produced and laboratory-produced mixtures, to evaluate the effect of mixture variables on the differences observed, and to translate these to anticipated differences in fatigue performance through pavement evaluation using a linear viscoelastic layered analysis. In this study, 11 plant mixed, plant compacted, and their corresponding laboratory-mixed, laboratory-compacted mixtures are evaluated through binder and mixture testing. Mixture variables include aggregate gradation, binder grade and source, and recycled materials’ type and content. Performance grading on extracted and recovered binders, and complex modulus and SVECD fatigue testing on mixtures were conducted, and fatigue life was predicted using layered viscoelastic pavement design for critical distresses software. Most of the results show the laboratory mixtures are generally stiffer than the plant mixtures, but there is no constant shift for all mixtures. Larger differences are observed for the 19 mm and PG 58-28 mixtures and binder source appears to influence the differences as well. Different plants result in different effects on the properties of plant and lab-produced mixtures. This study provides a unique set of data that expands understanding of differences between laboratory and plant production of asphalt mixtures.  相似文献   

12.
为解决柔性基层沥青路面车辙问题,采用室内试验和数值模拟对柔性基层沥青路面车辙性能的影响因素进行了研究。结果表明,空隙率是影响柔性基层沥青混合料抗车辙能力最关键的因素,宜为4%左右;级配形成骨架嵌挤结构能明显提高柔性基层混和料的抗车辙能力,但级配不宜太粗;对SBS改性沥青,可根据基质沥青的高温性能指标来选择改性沥青;温度、荷载、行车速度对柔性基层沥青路面车辙性能有显著影响。  相似文献   

13.
Pavement overlays represent a common technique used for pavement rehabilitation and maintenance and to increase the structural support of the pavements. In the Department of Defense, the methodology for the design of flexible pavement overlays is contained in the Unified Facilities Criteria 03-260-02 criteria and involves the use of an empirically derived formulation. The overlay design of flexible pavements is based on the thicknesses of the existing asphalt, base and subbase layers and the required minimum thickness for the asphalt layer. However, this formulation does not take into account the quality or the structural condition of the existing surface layers. The current formulation considers the materials to have full structural strength and no deterioration. This study proposes an improved methodology for calculating the required flexible overlay thickness of a flexible pavement by taking into account the structural condition of the existing asphalt layer. An asphalt thickness correction factor is introduced to quantify the amount of the existing asphalt layer thickness that can still offer structural support, and therefore influence the overlay thickness. The asphalt correction factor is based on the existing load-related distresses affecting the asphalt surface. The implementation of this new approach showed that an asphalt layer in poor condition requires up to 60% more in thickness than an asphalt layer in good condition. The proposed methodology aims to standardise the design and evaluation of flexible pavements overlaid with asphalt layers and account for existing structural conditions. Moreover, allocation of maintenance funding can be optimised, thus limiting pavement overdesign.  相似文献   

14.
The skid resistant performance of slippery pavement is one of the most important pavement surface characteristics, as it is associated with both pavement serviceability and traffic safety. Through simulating different pavement conditions in the freezing laboratory, skid resistance of asphalt pavement under various slippery conditions is measured with pendulum friction coefficient tester. Then, the effects of pavement temperature on skid resistance of dry, wet, icing and snowy pavements are quantitatively analysed. Furthermore, factors exerting effects on test results are taken into account, such as thicknesses of ice and water film on pavement. Through quantitative analysis, empirical evaluation model of pavement friction coefficient (PFC) under different conditions is established. To facilitate practical engineering application, reference standard values of PFC are recommended. Finally, the PFC is classified into seven levels, which illustrates the corresponding relationships of friction rank, skid resistance assessment, PFC range and pavement conditions.  相似文献   

15.
This paper presents a dynamic model of asphalt pavement by considering the characteristics of moving tyre load, visco-elastic performance of material and layered system of pavement. The pavement is defined as an infinite layered system with the tyre load moving at a constant speed, and asphalt concrete (AC) is characterised as a kind of visco-elastic material. Using the spectrum analysis method, a complex tyre load is decomposed into a series of harmonic loads. Based on the frequency characteristics of a linear system, a universal formulation pattern for differential visco-elastic constitutive relations is provided. And then, a model is set up to analyse the dynamic response of asphalt pavement under moving harmonic load, and then to extend to the arbitrary moving load according to the superposition principle of a linear system. The dynamic responses of seven typical semi-rigid base asphalt pavements are analysed using the model. Analysis results indicate that the tensional strain at the bottom of the AC layer and the vertical compression strain at the top of the roadbed are not suitable for key indices of the semi-rigid base asphalt pavement. The shearing strain at the bottom of the AC layer can be taken as a key index to evaluate the fatigue performance, and the vertical compression strain at the top of the pavement surface can be taken as a key index to evaluate pavement rutting, and the vertical shearing strain at the top of pavement surface can be taken as a key index to evaluate top–down crack.  相似文献   

16.
结合自身的研究,综述了沥青流变测试技术近几年的发展情况。分析认为,国内外都从影响路用性能的因素出发(包括车辆荷载、温度环境与降水、沥青材料的老化等),利用新型流变测试手段进行沥青路用性能及其行为机制的研究,并出现了较多的新型测试方法和评价技术。相对国外,国内沥青研究方法还多停留在常规分析和Su-perpave的沥青结合料的标准方法,在材料使用条件的模拟研究上,诸如频率、温度、应力水平、应变水平、界面行为等方面还存在很多测试方法创新和研究空间。  相似文献   

17.
An induction healing approach was developed to increase the service life of porous asphalt wearing course. Steel wool fibers were mixed in the asphalt mixtures, and then induction heating was applied to heat up the localized steel wool fibers in asphalt mixtures when damage is expected. As a result of induction heating, possible cracks and damages inside porous asphalt can be healed. The objective of this paper is to characterize the field obtained material from an induction healing porous asphalt trial section with laboratory experiments. Heating speed of the field cores was first measured with an infrared camera. It was found that these cores with steel wool can be heated with induction energy. Then, the particle loss value, indirect tensile strength, water sensitivity and nano indentation modulus of the field cores were studied. The results indicate that the addition of steel wool improves the particle loss resistance and ductility of the porous asphalt concrete cores. The mortar phase in porous asphalt core with steel wool shows higher indentation modulus than that in the plain core. These findings imply that steel wool can increase the ravelling resistance of porous asphalt concrete. Finally, the fatigue life extension parameter in four point bending test was applied to investigate the healing potential of this porous asphalt mixture with and without induction heating. The fatigue life of the beams can be greatly extended with induction heating. It was also found that the aged beams can heal much more and faster with induction heating than that with natural healing. Based on these findings, it is expected that the durability of porous asphalt pavement will be improved by the reinforcement of steel wool and induction healing.  相似文献   

18.
The cause(s) of slippery ultra-thin bonded wearing course (UTBWC) of an asphalt pavement was investigated. Petrographic analysis showed that the aggregate used in the UTBWC is mainly limestone with an average acid-insoluble residue of 5.1%. Coefficient of friction tests were performed both on a comparative UTBWC from Virginia with a different aggregate mineralogy VA-UTBWC and on slabs extracted from the slippery UTBWC pavement overlay. The tests clearly showed that the slippery UTBWC overlay sharply declined throughout the polishing process, consistent with the aggregate mineralogical composition and its low amount of acid-insoluble residue. In contrast, the comparative VA-UTBWC mix showed a gradual increase and then decrease in friction with continued polishing. This investigation clearly showed that the cause of the slippery asphalt pavement problem of the road mainly attributed to limestone aggregate polishing.  相似文献   

19.
In this study, predictions of full-scale micromechanical (MM) finite element (FE) models, developed from X-ray computed tomography images of asphalt concrete samples that were sawn from the accelerated pavement test sections, were used to evaluate the accuracy of layered elastic theory (LET) models that are used in pavement design today. First, MM FE and LET models were both calibrated using the measured strain gauge responses. Predictions of calibrated models were compared to evaluate the reasonableness of LET model outputs at high temperatures. Second, asphalt concrete stiffnesses measured in the laboratory were directly used for LET model development without performing any strain gauge calibration to evaluate the actual predictive capability of LET models in pavement design by using the calibrated MM FE model outputs as the ground truth. Recommendations were also made for future use of the MM FE models to improve the predictive capability of LET models.  相似文献   

20.
Gradation-based framework for asphalt mixture   总被引:1,自引:0,他引:1  
Aggregates are the major component of asphalt mixtures, greatly influencing the mixtures resistance to failure. The structure that is formed by the aggregates will depend mostly on the size distribution, shape and mineral composition. Coarse aggregate have a strong influence on the resistance to rutting, while fines provide stability to the mixture. In the present study a generalized framework is developed to identify the range of aggregate sizes which form the load carrying structure in hot mix asphalt and determine its quality. The method has been developed as a numerical procedure based on packing theory. Parameters like porosity and coordination number have been used to evaluate the quality of the load carrying structure and relate it to resistance to rutting. The framework has been evaluated on several field and laboratory mixtures and related to their rutting performance. The gradation analysis of the mixtures has compared favorably with the performances reported from the field and laboratory testing. The developed gradation analysis framework has proven to be a tool to identify those mixtures with a poor rutting performance based on the gradation of the aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号