首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
搅拌摩擦焊是一种新型的、绿色环保、高效的固相焊接技术,其过程涉及由轴肩和搅拌针构成的无损耗搅拌工具。焊接过程中,高速旋转的搅拌工具插入到工件表面直至轴肩与工件接触,并沿焊缝向前行进,利用搅拌工具与工件产生的摩擦热使待焊材料塑化,并在搅拌工具的带动下产生流动与混合从而实现焊接。详细分析了搅拌摩擦焊接的微观组织结构,搅拌工具以及主要工艺参数对焊接的影响并通过试验研究了主轴转速、焊接速度以及轴肩下压量对焊接温度的影响。试验研究表明,主轴转速和焊接速度对焊接温度的影响较大,下压量对焊接温度的影响不大。  相似文献   

2.
为提高搅拌摩擦焊焊接成功率,基于相关工程经验和热传导理论,提出了一种在确定被焊工件厚度情况下保证焊接成功所需要的搅拌头最小轴肩直径的方法.讨论搅拌针直径和长度等参数的选取方法,以稳态焊接时搅拌头摩擦产热量等于工件内固塑分界面的散热量为基础,推导被焊工件厚度与所需搅拌头最小轴肩直径的关系方程,并探讨该方程相关参数的取值范...  相似文献   

3.
搅拌摩擦焊工艺与机理的研究   总被引:1,自引:0,他引:1  
搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种利用高速旋转的搅拌头与工件磨擦产生的热量使被焊材料局部塑化的新型固相连接工艺。它可以对多种熔化焊接性差的有色金属等材料进行可靠的连接,而且连接工艺简单,有较好的工艺适应性。本文在总结搅拌摩擦焊研究成果的基础上,论述了搅拌摩擦焊的基本原理和特点,阐述了近年来国内外搅拌摩擦焊工艺参数、接头微观组织、焊接成形机理等方面的研究现状,并展望FSW的应用前景。  相似文献   

4.
搅拌摩擦焊焊接温度数值模型及其影响因素   总被引:2,自引:1,他引:1  
通过对搅拌摩擦焊过程进入稳定状态后摩擦产热与散热机制的分析,建立了搅拌摩擦焊焊接温度的数值模型。由数值模型可知,影响焊接温度的各种因素包括被焊材料和搅拌工具材料的物理性质、两者之间的摩擦因数、搅拌工具的尺寸、焊接参数、被焊材料表面受到的轴向压力和侧面受到的进给压力等,有些因素之间还互相影响,关系复杂。其中,搅拌工具的旋转速度、搅拌工具与被焊材料之间的摩擦因数、被焊材料表面受到的轴向压力及侧面受到的进给压力是主要因素。以聚氯乙稀板材搅拌摩擦焊为例,验证了在适当的取值范围内焊接温度数学模型的理论计算值与实测值基本吻合。  相似文献   

5.
搅拌摩擦焊是利用一种特殊形式的搅拌头边旋转边前进,通过搅拌头与工件的摩擦产生热量,摩擦热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使待焊件压焊为一个整体。本文简要地介绍了搅拌摩擦焊的原理及其优缺点,重点介绍了搅拌摩擦焊在无损检测、有限元分析、极限条件、界面复合物、疲劳等方面的最新研究进展以及搅拌摩擦焊在航空航天领域、造船业、陆路交通工业中的应用现状,并展望了搅拌摩擦焊的研究前景。  相似文献   

6.
大厚度铝合金板搅拌摩擦焊工程应用时常用双轴肩焊接工具焊接,而双轴肩焊接工具使用寿命较短、易磨损,铝合金厚板单轴肩搅拌摩擦焊在工程实践中具有重要意义。针对5A06铝合金厚板的单轴肩搅拌摩擦焊过程进行了热流有限元分析,建立了大厚度铝合金板热流仿真模型,分析了5A06铝合金焊接时温度场分布特征、焊接热循环曲线特征,焊接前进侧/后退侧热循环曲线及外加热源、冷源对搅拌摩擦焊温度场的影响。结果表明,单轴肩搅拌焊工具插入工件预热初期,轴肩产热占整个搅拌工具产热70%以上,前进侧和后退侧最高温度相差约40℃,同时施加热源和冷源时能够很好地限制板材底部热量的散失以及轴肩附近温度的快速升高,有利于焊缝质量的提升。  相似文献   

7.
研究了搅拌摩擦焊工艺参数对LY12铝合金焊缝形貌的影响。研究结果表明:采用左螺纹圆柱搅拌头进行焊接时,形成的焊核关于搅拌针中心不对称,回撤边塑性金属迁移程度大于前进边;搅拌头旋转速度和轴肩下压量相同时,增大焊接速度可使回撤边塑性金属向上迁移程度减弱,使焊核宽度及焊核中心偏向回撤边距离减小;搅拌头旋转速度和焊接速度相同时,增大轴肩下压量可使焊核宽度和焊核中心偏向回撤边的距离增大,使回撤边塑性金属向上迁移程度先增大后减小。  相似文献   

8.
2219铝合金搅拌摩擦焊工艺及接头性能   总被引:2,自引:0,他引:2  
采用搅拌摩擦焊方法对6 mm厚的2219铝合金板进行焊接,研究了2219铝合金的搅拌摩擦焊工艺和主要焊接参数对焊缝成形和接头力学性能的影响.结果表明:在旋转速度1250~1400 r·min-1,焊接速度100~140 mm·min-1时,可获得性能良好的焊接接头;对2219铝合金搅拌摩擦焊接后再固溶时效处理可有效消除接头软化区,提高接头强度.  相似文献   

9.
铝合金搅拌摩擦焊技术研究   总被引:12,自引:1,他引:12  
论述了搅拌摩擦焊的焊接方法、工艺过程和基本原理;通过大量的工艺参数优化,解决了焊缝中的孔洞问题,使LF6板材搅拌摩擦焊的焊缝达到与母材等强,LY12焊后未经热处理,连接强度接近母材的80(。由金相分析可以看出,搅拌摩擦焊属于固相连接,焊缝晶粒细小,无气孔、夹杂、裂纹等焊接缺陷。初步应力测试发现,搅拌摩擦焊焊缝比熔焊焊缝的残余应力低。试验研究结果表明,搅拌摩擦焊焊接过程稳定可靠,焊接接头性能良好,具有广泛的应用前景。  相似文献   

10.
张军  王稳  王健  金涛涛  田志鹏 《中国机械工程》2022,33(17):2115-2124
为了解决非刚性支撑条件下传统搅拌头易陷入被焊接板材而导致焊接失败的问题,设计研发了静轴肩焊接结构。通过建立有限元仿真计算模型,并使用热红外成像仪对焊接表面温度进行实时监测,分析不同工艺参数下静轴肩摩擦搅拌焊焊接过程中的温度场变化情况。使用设计研发的静轴肩摩擦搅拌焊进行现场试验并对完成焊接表面无缺陷的焊缝与母材进行拉伸试验对比,检测其焊缝机械强度,并对断口进行微观组织分析。结果表明:在使用静轴肩搅拌头焊接过程中,产热量主要来源于搅拌针轴肩的摩擦生热和搅拌针端部的摩擦生热,搅拌针的侧面摩擦生热和静轴肩的摩擦生热占比较小;对产热量影响较大的是主轴压力和主轴转速,C轴转速对产热量影响不大;在主轴压力为2940~3430 N,主轴转速为1000 r/min,C轴转速为0.05 r/min的工艺参数下,完成焊接的焊缝表面光滑无飞边,内部无沟槽隧道缺陷,焊缝抗拉性能达到母材的71.5%左右;焊缝断口存在分层现象,靠近焊接表面的上层呈脆性断裂特性,下层呈延性断裂特性,与母材相比,焊缝试样的延伸率和抗拉强度均有所降低。  相似文献   

11.
The use of friction stir welding (FSW) to join thermoplastics has proven to produce strong welds with good surface quality when compared to conventional welding methods. In this study, a Teflon stationary shoulder was developed to weld 3-mm-thick plates of high molecular weight polyethylene in butt-joint configuration. Different sets of welding parameters were chosen and tested to evaluate their effect on the weld strength. Also, in order to increase joint performance, the temperature generated during welding was measured. For that purpose, thermocouples were located underneath of the weld nugget surface to measure the generated frictional heat for different tool diameters and parameters. Tool diameter and rotational and welding speeds are the most influential parameters regarding the welding temperature; however, all the input parameters had statistically significant effect on the weld quality. Unlike FSW in metals, using this tool, the heat is generated mainly by surface contact of the rotating probe and copper sleeve than the base material. The strongest welded joint was able to withstand 97% of the force that is necessary to fracture the base material, without using an external heating source.  相似文献   

12.
Friction stir welding (FSW) is a solid-state welding process that utilizes a rotating tool to plastically deform and forge together the parent materials of a workpiece. The process involves plunging the rotating tool that consists of a shoulder and a pin into the workpiece and then traversing it along the intended weld seam. The welding process requires a large axial force to be maintained on the tool. Axial force control has been used in robotic FSW processes to compensate for the compliant nature of robots. Without force control, welding flaws would continuously emerge as the robot repositioned its linkages to traverse the tool along the intended weld seam. Insufficient plunge depth would result and cause the welding flaws as the robot’s linkages yielded from the resulting force in the welding environment. The research present in this paper investigates the use of torque instead of force to control the FSW process. To perform this research, a torque controller was implemented on a retrofitted Milwaukee Model K milling machine. The closed loop proportional, integral plus derivative control architecture was tuned using the Ziegler–Nichols method. Welding experiments were conducted by butt welding 0.25 in. (6.35 mm)?×?1.5 in. (38.1 mm)?×?8 in. (203.2 mm) samples of aluminum 6061 with a 0.25 in. (6.35 mm) threaded tool. The results indicate that controlling torque produces an acceptable weld process that adapts to the changing surface conditions of the workpiece. For this experiment, the torque was able to be controlled with standard deviation of 0.231 N-m. In addition, the torque controller was able to adjust the tool’s plunge depth in reaction to 1 mm step and ramp disturbances in the workpiece’s surface. It is shown that torque control is equivalent to weld power control and causes a uniform amount of energy per unit length to be deposited along the weld seam. It is concluded that the feedback signal of torque provides a better indicator of tool depth into the workpiece than axial force. Torque is more sensitive to tool depth than axial force. Thus, it is concluded that torque control is better suited for keeping a friction stir welding tool properly engaged with the workpiece for application to robotics, automation, and manufacturing.  相似文献   

13.
The weld properties remain an area of uncertainty with respect to the effect of different speeds of friction stir welding (FSW). For this purpose, hardened steel tool of FSW was used, which consists of the shoulder and pin. The shoulder of the tool not only provides additional heat generated by friction but also prevents plasticized material to escape. In the present investigation, aluminum welds were made at various welding speed using the FSW technique. The welds were characterized for mechanical properties and microstructural investigation. It is observed that good correlation exists between the mechanical properties and welding speeds. The best mechanical properties were obtained at lower welding speed.  相似文献   

14.
The scope of this investigation is to evaluate the effect of welding parameters on the mechanical properties and microstructural features of 3-mm-thick AA7075-T6 aluminum alloy subjected to gas heating system as a preheating source during friction stir welding. Toward this end, a gas heating system was designed to heat up the weld seam just ahead of rotating tool to soften the material before being stirred. Three welding parameters, five levels, and a central composite design (CCD) have been used to minimize the number of experimental conditions. The joining parameters such as tool rotational speed, welding speed, and shoulder diameter have a significant influence on determining the mechanical properties of the welded joints. It was found that using preheating system mostly can result in higher total heat input into the weld joint and effectively reduces the formation of defects when unsuitable process parameters were used. Also, an attempt has been made to establish the mathematical model to predict the tensile strength and microhardness of the joints. The optimal welding conditions to maximize the final responses were investigated and reported. The results show that the joint fabricated at a rotational speed of 1,050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to other joints.  相似文献   

15.
A new Eulerian model is established based on solid mechanics. With comparisons to the experimental data and the ALE model, the current model is validated. The power and the heat generations from pin side surface, pin tip surface, and shoulder contact surface in different rotating speeds are studied. Results indicate that the ratio of the heat input powers from the pin and the shoulder keeps constant in different rotating speeds. The velocity of the material flow around the welding tool and the slipping velocity are both increased with the increase of the rotating speed. The increase of the slipping velocity is the main reason for the increase of the heat input with the increase of the rotating speed. The torque from the shoulder contact surface is the major part of the total torque. The contribution to the total torque from the pin tip surface is the smallest.  相似文献   

16.
Underwater friction stir welding (FSW) could widely extend the submarine applications of solid-state welding methods. Since, in the case of underwater FSW, the temperature field exhibits profound effects on the acquired weld properties, studying the corresponding governing parameters is of high priority. With this end in view, in order to explicate the heat generated by the FSW tool, the applied forces on the FSW tool, as the unknown parameters in the heat generation equation, are obtained. Subsequently, the heat transfer of the surrounding fluid, which dictates the heat transfer through the workpiece is investigated. The results reveal that upon comparison to FSW in air medium, both translational and axial forces considerably increase leading to greater heat generated by the underwater FSW tool. However, the peak temperature in each point during underwater welding declines dramatically (40 %) compared to the in-air welding, which can be attributed to the extreme boiling heat transfer of water on both the workpiece and FSW tool. This behavior may be the main reason for the acquired mechanical properties of the underwater-welded AA7075-T6 plates as a precipitating hardening alloy. The mentioned heat transfer is non-uniform over the workpiece and comprises different types including nucleation and transition boiling as well as free convection. Furthermore, the study of the mechanical characteristics revealed that underwater welding leads to joints with more strength and lower ductility compared to those obtained by in-air welding.  相似文献   

17.
Reverse dual-rotation friction stir welding (RDR-FSW) is a novel FSW technology in which the tool pin and the assisted shoulder rotates reversely, thus it has the capability to obtain appropriate welding conditions through adjusting the rotating tool pin and surrounding assisted shoulder independently. In the present study, a RDR-FSW tool system was designed and successfully applied to weld high strength aluminum alloy 2219-T6, and the effects of welding speed on microstructures and mechanical properties were investigated in detail. At a constant rotation speed of 800 rpm for both the rotating tool pin and the reversely rotating assisted shoulder, defect-free joints were obtained at welding speeds ranging from 50 to 150 mm/min, while a cavity defect appeared at the three-phase confluction on the advancing side when the welding speed increased to 200 mm/min. With increasing of the welding speed, the width of the softened region decreased, but the minimum microhardness value increased gradually. When compared with the joints welded by the conventional FSW, there is only a minor variation of the Vickers hardness across the stirring zone in the joint welded by the RDR-FSW. The maximum tensile strength 328 MPa (73.7 % of the base material) was obtained at the welding speed of 150 mm/min, while the elongation reached its maximum 7.0 % (60.9 % of the base material) at the welding speed of 100 mm/min. All defect-free joints were fractured at the weakest region with the minimum Vickers hardness, while for the joint with cavity defects the fracture occurred at the defect location. The tensile fracture was in the ductile fracture mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号