首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
根据窄间隙矩形通道的流道结构特点,参考圆管环状流临界热流密度(CHF)预测解析模型,得到了可以预测间隙厚度不小于0.5mm的窄间隙矩形通道内发生沸腾两相流环状流时的CHF解析模型。计算表明,当窄间隙矩形通道的进口截面宽度与间隙厚度比为25~85时,通道内的CHF值强化比较明显。根据汽-液两相介质的特点,推导出了在沸腾两相流系统中发生CHF时的传热强化判定准则。分析计算表明,这个判定准则是合理的,传热强化较好的进口截面宽度与间隙厚度比为45~75。综合两者的计算结果,窄间隙矩形通道内传热强化的参考进口截面宽度与间隙厚度比为45~75。  相似文献   

2.
临界热流密度(CHF)是导致沸腾传热变化而使发热元件表面发生传热恶化的现象。RELAP5等系统程序的CHF模型对于传热系统的安全分析有重要影响。基于RELAP5程序对单棒及三棒束自然循环CHF实验进行建模,并在CHF实验数据基础上对RELAP5中CHF预测值进行对比分析。实验装置是带有一个向上流动通道的自然循环回路。其中单棒束加热测试段由一根轴向非均匀加热的电加热棒及圆管外壁组成的环管状流道,三棒束流道由三根相同的轴向非均匀加热棒与三叶型的外管组成。实验条件为低压、低流量的自然循环流动:入口压力110~270 kPa、入口过冷度为10~70 K、自然循环流量0~400 kg/(m2·s)。依次以质量流量、入口压力和过冷度为基准参数对比分析实验值和RELAP5预测值。结果表明在低压、低流量及自然循环条件下,RELAP5中的CHF预测值随着质量流量的增大而增大,与入口压力及过冷度之间的依赖关系不明显。通过对实验值与模型计算值的比较得到,单棒束RELAP5模型预测的CHF值偏高于实验值,而三棒束RELAP5模型的预测值较实验值偏低。  相似文献   

3.
盛程  周涛  李精精  段军 《原子能科学技术》2012,46(11):1330-1335
通过自然循环流动实验,取得5 mm间隙窄矩形通道的自然循环临界热流密度(CHF)发生时的可视化图片,以及流量、壁温和实验段压差信号,并运用非线性分析技术对CHF发生过程进行了定性和定量研究。研究发现:自然循环压差时间序列的功率谱在半对数坐标中呈指数下降;自相关系数逐渐下降;三维吸引子相图表现出奇怪吸引子的特点。这表明了自然循环系统CHF的发生过程具有非线性混沌特性。自然循环CHF发生的初始阶段,由于流量脉动和流型往复变迁,流动和换热表现出一定的周期性;随着热流密度的提高,周期性减小,随机性增大,但总能达到一个确定的状态,体现了混沌运动的特点。  相似文献   

4.
《核动力工程》2017,(3):7-11
对自然循环系统矩形通道内临界热流密度进行实验研究。研究发现:实验本体增加功率后,环状流液膜蒸干,壁温出现持续快速上升,实验本体出口发生沸腾临界。根据壁温的上升趋势和出口处流体的临界含汽率可以判断自然循环系统出现的临界热流密度(CHF)类型为干涸(Dryout)型。当自然循环系统沸腾临界出现时,自然循环流量出现明显的上升。根据理论分析可知:沸腾临界发生时导致自然循环流量上升的主要原因是环状流转变成弥散流,附在加热壁面的液膜消失,摩擦压降迅速减小。  相似文献   

5.
介绍在高温、高压热工实验装置上进行的垂直上升流条件下一种特殊的非对称加热—单侧加热窄缝矩形通道临界热流密度(CHF)实验研究。实验研究了质量流速、临界含汽量等参数对单侧加热矩形通道CHF的影响规律。研究结果表明,在实验参数范围内,单侧加热与双侧加热的CHF值相差不大,且两者的变化规律基本一致:即在其他热工参数保持不变的情况下,单侧加热CHF随临界含汽量的增加而减小,随入口过冷度的增加而增大;在较低含汽量范围内,单侧加热CHF随质量流速的增加而增大;在较高含汽量范围内则趋势相反。本文提出的单侧加热矩形通道CHF计算关系式在参数范围内计算精度良好。  相似文献   

6.
为探究窄矩形通道内环状流的流动传热特性,根据液膜的质量、动量和能量方程以及汽芯的动量方程建立了环状流的预测模型。对该模型进行数值求解,得出了窄矩形通道内环状流区域的沸腾换热系数,并分析了热流密度、质量流速和矩形通道尺寸对液膜厚度的影响。结果表明:该模型能很好地预测沸腾换热系数,其误差在±30%以内,且热流密度和矩形通道的尺寸对液膜厚度的影响效果比较大。  相似文献   

7.
利用纵向涡发生器在窄间隙矩形通道内产生的纵向涡可以起到强化传热的作用.运用CFD商业软件CFX10.0对带纵向涡发生器的窄间隙矩形通道内的汽液两相介质进行了模拟计算.结果表明,产生和纵向涡能有效地降低窄间隙矩形通道的边角处热量集中,提高中央主流区流速,进而明显提高加热板上的热流密度;LV也能加强通道内冷热流体交混,起到强化传热的作用.在本文参数范围内,相对于光滑通道而言,带LVG的窄间隙矩形通道在适当增加流动阻力的基础上,能明显提高传热效率.  相似文献   

8.
液膜干涸(DRYOUT)被广泛认为是诱发环状流区临界热流密度(CHF)的机理,已有DRYOUT模型对于矩形窄通道能否适用缺乏实验验证。本文通过比较几组不同的沉积率、夹带率关系式,得到了一优化的DRYOUT模型。计算结果表明:本文的模型较已有模型具有更高的精度,可用于矩形窄通道CHF的预测计算。  相似文献   

9.
《核动力工程》2016,(3):21-25
基于微液层蒸干的临界触发机理,构建了偏离泡核沸腾(DNB)型的临界预测模型。通过对临界点处的汽块进行受力平衡分析,基于优化后的侧面提升力系数CL,确定了汽块滑移速度、微液层液膜厚度等参数,实现对均匀加热下DNB型临界热流密度的理论预测。采用2种加热长度下矩形窄缝通道内的临界热流密度实验数据对该模型进行了验证。结果表明:模型所预测矩形窄缝通道内的临界热流密度值与实验结果的偏差均在±15%之内,该模型的预测精度高于Bowring公式和Bettis公式的预测精度。  相似文献   

10.
竖直管道内间歇式两相流动沸腾特性分析   总被引:1,自引:1,他引:0  
自然循环或重力注水过程的热功率、冷却剂流量等操作条件较小,易出现各种流动不稳定现象,影响核反应堆事故的发展进程,间歇式流动沸腾现象就属于其中的一种。以去离子水为工质,采用2×2加热棒束,对内径为32 mm竖直通道内的间歇式流动沸腾现象进行了实验研究,分析了不同热流密度下间歇式流动沸腾不稳定现象的变化规律,讨论了热流密度对间歇式沸腾周期的影响。结果表明,在一定的热流密度条件下,当加热通道内流体达到饱和并过热时,会发生周期性地剧烈喷涌及冷液回流现象,期间伴随泡状流、弹状流、搅混流及环状流等多种流动形态;间歇喷涌周期取决于沸腾停滞时间,随热流密度的不断增大,沸腾停滞时间缩短,间歇喷涌周期也缩短。当热流密度增大到一定程度时,间歇式流动沸腾现象消失,从而转变为另一种两相流动不稳定现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号