首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 × 108 s−1 to 1.4 × 1011 s−1. The results show that two critical strain rates, i.e., 5 × 109 s−1 and 8 × 1010 s−1, are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 × 109 s−1, Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {1 1 1} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8 × 1010 s−1, Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 × 109 s−1 and 8 × 1010 s−1, only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {1 1 1} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation.  相似文献   

2.
A new, selective and sensitive on-site spectrophotometric method for the determination of antimony at trace level in water, soil and dust samples of Central India has been demonstrated. It is based on the color reaction of Sb(III) with I ions in the presence of a cationic surfactant cetylpyridinium chloride (CPC) in acidic media, and subsequent extraction of the complex with N-phenylbenzimidoylthiourea (PBITU) into chloroform to give a yellow colored complex. The value of apparent molar absorptivity of the complex in the terms of Sb is (7.84) × 104 l mol−1 cm−1 at 440 nm. The detection limit of the method is 5 ng ml−1. In addition, the present method is free from interferences of all metal ions that are associated during the determination of antimony in environmental samples.  相似文献   

3.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


4.
Single-crystal ZnWO4:Dy3+ was grown by Czochralski technique. The XRD, absorption spectra as well as fluorescence spectrum are investigated and the Judd–Ofelt intensity parameters Ω2, Ω4, Ω6 are obtained to be 7.76 × 10−20 cm2, 0.57 × 10−20 cm2, 0.31 × 10−20 cm2, respectively. Calculated radiative transition rate, branching ratios and radiative lifetime for different transition levels of ZnWO4:Dy3+ crystals are presented. Fluorescence lifetime of 4F9/2 level is 158 μs and quantum efficiency is 66%.The most intense fluorescence line at 575 nm correlative with transition 4F9/2 → 6H13/2 is potentially for application of yellow lasers.  相似文献   

5.
Sulfamethoxazole abatement by means of ozonation   总被引:3,自引:0,他引:3  
Sulfamethoxazole (SMX) is a bacteriostatic antibiotic largely used for diverse types of illness. Its widely use in humans and even in animals releases unmetabolized and active metabolites that have a strong potential in terms of effect in organisms. In this work, 200 mg L−1 solution of sulfamethoxazole was treated by ozonation at different pH. Results showed that ozonation was proved to be an efficient method to degrade sulfamethoxazole. After 15 min of ozonation (corresponding dose = 0.4 g of ozone L−1), the complete antibiotic abatement was almost achieved with just 10% of mineralization. The biodegradability and toxicity of the ozonation intermediates were also studied. A biodegradability enhancement (increment of BOD5/COD ratio) from 0 to 0.28 was observed after 60 min of ozonation. The acute toxicity of the intermediates was followed by the Microtox® test and the toxicity profile showed a slight acute toxicity increment in the first stage of ozonation. The pH variation had an important role in the TOC and COD removal, promoting their growth with the increment of alkalinity. The second order kinetic constants for the ozonation of the SMX in an order of magnitude of 105 L mol−1 s−1 were also determined for pH 5 and 7.  相似文献   

6.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

7.
Ca65Mg15Zn20 bulk metallic glass (BMG) samples of dimensions 3.2 mm × 7 mm × 125 mm were prepared using a low-pressure die casting technique. These samples were ground to produce tensile test pieces in compliance with ASTM E8-04. This work is the first reported study of the tensile behaviour of Ca65Mg15Zn20 BMG in the supercooled liquid region (105–120 °C). Two deformation conditions were used for testing: (i) constant strain rate testing from 10−3 to 10−4 s−1 and (ii) constant load testing using loads of 20–50 N applied to a tensile sample during heating at a constant rate of 5 °C s−1. The maximum elongation to failure in the BMG was in excess of 850% for constant load testing although, under isothermal testing conditions, most samples failed after 200% elongation. It is concluded that large superplastic elongations (>500%) during isothermal tensile straining is difficult in this alloy due to the onset of crystallization.  相似文献   

8.
Zirconia ceramics, mainly of cubic phase, are used in different applications because of their particular electrical and structural properties.

After the forming stage, sintering leads to a material with suitable microstructural characteristics. The sintering process mainly depends on thermal cycle and on starting particle size and its distribution; it also depends on density and the microstructure of green material. Cubic zirconia has a high (2680 °C) melting temperature; however, effective sintering could be observed for temperatures higher than 900 °C (nanoparticles), and it may reach a final density of 96–98% the theoretical value at relative low temperatures.

The objective of this paper is to study the sintering kinetics of stabilized zirconia in its cubic phase with 8% molar of Y2O3 under fast firing rates up to nearly isothermal conditions. Samples were shaped from suspensions dispersed with ammonium polyacrylate by slip casting. Sintering was performed in the temperature range between 1200 °C and 1400 °C. The sintering kinetic process was followed by measuring density as a function of time. A sintering model was applied to fit the experimental data of the first steps of densification. It was observed that sintering obeys the same mechanism in the temperature and time ranges under study, which results in an activation energy of 170 kJ mol−1. Sintering is controlled by Zr cation diffusion, for which a lattice diffusion coefficient of Dl = 8 × 10−12 cm2 s−1 at 1400 °C was found, and the activation energy of the diffusion process was 223 kJ mol−1.  相似文献   


9.
The aim of this work is to study the mechanical properties of a nitrogen austenitic stainless steel (Uranus B66) and their relation to its microstructural evolution. Quasi-static (10−3 s−1) and quasi-dynamic (1 s−1) compression tests have been carried out with a universal servo-hydraulic testing machine. Dynamic (>103 s−1) compression tests have been performed on a classical split-Hopkinson bar apparatus. These tests, which cover a wide range of plastic strain, show that the material has a high-strain hardening rate, a good ductility and a great strain rate sensitivity. The temperature sensitivity has been determined over a large range, going from 77 K to 673 K. Transmission electron microscopy (TEM) observations have been conducted in order to correlate the microstructure to the mechanical behaviour. Uranus B66 undergoes basically the same structure evolution during both quasi-static and dynamic compression tests. The plastic deformation is governed initially by planar gliding, followed by mechanical twinning when the dislocation density is saturated.  相似文献   

10.
Ni/Cu double- and multilayers subjected to high-speed deformation were investigated by Auger electron spectroscopy (AES) using depth profiling. Ni and Cu thin films were alternately deposited on a 0.3 mm thick Ni substrate using RF magnetron sputtering. The thickness of the double-layer was 90 nm, while that of the multilayer was 160 nm. High-speed compression was performed using bullet masses from 30.0 to 57.4 g at varying bullet speeds between 16.8 and 48.5 m s−1. The strain rate ranged from 6.7×104 to 8.4×105 s−1. Upon high-speed deformation, the thickness of the Ni/Cu double-layer was reduced to about 80% of its original value. The Cu thin film was compressed to a greater extent relative to the Ni thin film (by about 15%), which may be due to the difference in malleability between the two metals. At a strain rate of 8.4×105 s−1, the Ni/Cu double-layer virtually disappeared. Ni/Cu interdiffusion was enhanced by high-speed deformation. The degree of interdiffusion appeared to be greater at lower strain rates. Cu0.5Ni0.5 and Cu0.75Ni0.25 thin film alloys formed in the high-speed-deformed multilayer sample, indicating that high-speed compression could potentially be used to prepare thin film metal alloys.  相似文献   

11.
Production of positron annihilation radiation by cosmic-rays in Al, Fe, Sn and Pb is measured by means of a triggered HPGe detector. The equipment is located in Belgrade, at an absolute height of 125 m a.s.l. The production rate per unit mass is found to be proportional to the square of the atomic number of the material divided by its mass number, with the proportionality constant equal to 8.1(3)×10−6 s−1 g−1.  相似文献   

12.
Enhanced fluoride sorption by mechanochemically activated kaolinites   总被引:1,自引:0,他引:1  
This study investigated the surface modification of photocatalyst and photodecomposition of formaldehyde from indoor pollution source. This study explored the feasibility of the application of the ultraviolet light emitting diode (UVLED) instead of the traditional ultraviolet (UV) lamp to treat the formaldehyde. The photocatalytic decomposition of formaldehyde at various initial concentrations was elucidated according to the Langmuir–Hinshelwood model. The reaction rate constant (k) and adsorption equilibrium constant (KL) over 0.334 g silver titanium oxide photocatalyst (Ag/TiO2) coated on glass sticks with 254 nm ultraviolet lamp (UVC), 365 nm ultraviolet lamp (UVA), and UVLED are 650 ppmv min−1 and 2 × 10−4 ppmv−1, 500 ppmv min−1 and 1.04 × 10−4 ppmv−1, and 600 ppmv min−1 and 2.52 × 10−5 ppmv−1, respectively. A comparison of the simulation results with the experimental data was also made, indicating good agreement. The magnitudes of energy effectiveness (Ee) are in the order of UVLED (0.6942 mg kW−1 h−1) > UVA (0.007 mg kW−1 h−1) > UVC (0.0053 mg kW−1 h−1). The Ee of UVLED is 131 times larger than that of UVC. The UVLED can save a lot of energy in comparison with the traditional UV lamps. Thus, this study showed the feasible and potential use of UVLED in photocatalysis.  相似文献   

13.
The kinetic parameters such as crystallization activation energy, E, and the frequency factor, ν, of Li2O–Al2O3–SiO2 glass were determined by a new non-isothermal method. The method is described by the equation , where β is the heating rate and Tf is the inflection-point temperature of differential thermal analysis (DTA). The value of Tf is determined as the maximum peak temperature on derivative differential thermal analysis (DDTA) curves. Values of E and ν of Li2O–Al2O3–SiO2 glass were also determined by two existing non-isothermal methods, namely the Kissinger plot and the Ozawa plot, and compared with those determined by isothermal method. Values of E and ν determined by the proposed equation were 332 kJ/mol and 1.4×1013 s−1, respectively. They are excellent agreement with the isothermal analysis results, 336 kJ/mol and 1.8×1013 s−1, respectively. In contrast, both the Kissinger equation and the Ozawa equation give much higher values of E and ν.  相似文献   

14.
Three concepts for sources of ultra-cold neutrons (UCN) for the reactor FRM-II at Garching near Munich are studied: one, Mini-D2, is a source with 170 cm3 of solid deuterium in the beam tube SR4 and the second one a large solid-deuterium source (volume about 30 dm3), mounted in the beam tube SR5 as an advanced cold source with a number of neutron guides. The third one, Mark 3000, uses superfluid 4He at a cold-neutron guide. A UCN density of up to 7×104 cm−3 may possibly be achieved in the storage volumes of Mini-D2 yielding more than 109 UCN for extraction to an attached experimental setup. The usable UCN flux at the periphery of the large deuterium source is predicted to be 2×107 cm−2 s−1. Mark 3000, finally, is expected to yield a UCN density of about 105 cm−3.  相似文献   

15.
Adsorption of reactive orange 16 by quaternary chitosan salt (QCS) was used as a model to demonstrate the removal of reactive dyes from textile effluents. The polymer was characterized by infrared (IR), energy dispersive X-ray spectrometry (EDXS) analyses and amount of quaternary ammonium groups. The adsorption experiments were conducted at different pH values and initial dye concentrations. Adsorption was shown to be independent of solution pH. Three kinetic adsorption models were tested: pseudo-first-order, pseudo-second-order and intraparticle diffusion. The experimental data best fitted the pseudo-second-order model, which provided a constant velocity, k2, of 9.18 × 10−4 g mg−1 min−1 for a 500 mg L−1 solution and a value of k2, of 2.70 × 10−5 g mg−1 min−1 for a 1000 mg L−1 solution. The adsorption rate was dependent on dye concentration at the surface of the adsorbent for each time period and on the amount of dye adsorbed. The Langmuir isotherm model provided the best fit to the equilibrium data in the concentration range investigated and from the isotherm linear equation, the maximum adsorption capacity determined was 1060 mg of reactive dye per gram of adsorbent, corresponding to 75% occupation of the adsorption sites. The results obtained demonstrate that the adsorbent material could be utilized to remove dyes from textile effluents independent of the pH of the aqueous medium.  相似文献   

16.
In this study, a procedure for synthesis of new organic-inorganic magnetic composite resins was established. The procedure was based upon immobilization of magnetite (Mag) as a ferromagnetic material within the polymer poly(acrylic acid acrylonitrile) P(AA-AN) and the ion exchange resin (Amberlite IR120). The produced magnetic resins, IR120-PAN-Mag (R1) and P(AA-AN)-Mag (R2) were assessed as sorbents for Cr(VI). Various factors influencing the sorption of Cr(VI), e.g., pH, equilibrium time, initial concentration and temperature were studied. The sorption process was very fast initially and maximum sorption was achieved within 3 h and pH 5.1. The kinetic of the system has been evaluated with pseudo first order model, second order model, Elovich model, intra-particle diffusion model and liquid film diffusion model. Chromium interaction with composite particles followed second-order kinetics with a correlation coefficient extremely high and closer to unity and rate constant (ks) has the values 1.68 × 10−4 and 1.9 × 10−4 g (mg−1 min−1) for R1 and R2, respectively. The values of equilibrium sorption capacity (qe) are consistent with the modeled data and attain the range 893–951 mg g−1. Kinetically, both pore diffusion and film diffusion are participating in ruling the diffusion of Cr(VI) ions. The sorption data gave good fits with Temkin and Flory–Huggins isotherm models. The isotherm parameters related to the heat of sorption are in the range 8–16 kJ mol−1 which is the range of bonding energy for ion exchange interactions and so suggest an ion exchange mechanism for removal of Cr(VI) by the composite sorbents. The adsorption process was exothermic with ΔH in the range of −73 to −97 kJ mol−1. The negative values of Gibbs free energy confirm the feasibility and the spontaneous nature of Cr(VI) removal with these novel composites.  相似文献   

17.
Texture development in magnesium alloy AZ31 was studied by uniaxial compression tests at temperatures, strain rates and final strains ranging from 573 to 773 K, 1.0 × 10−3 to 5.0 × 10−5 s−1 and −0.2 to −1.5, respectively. Fiber texture was formed in all of the deformation conditions. The main component of the texture varied depending on deformation conditions; it appeared about 33–38° away from the basal pole after the deformation at higher temperatures and lower strain rates. This can be attributed to the increased activity of the secondary pyramidal slip system. With a decrease in temperatures and an increase in strain rate, the tilting angle of the main component (compression plane) from the basal pole decreased down to about 20°. Construction of a basal fiber texture was detected after deformations at the lowest temperature and high strain rates.  相似文献   

18.
Systematic experiments were carried out over a wide range of strain rate, 100–106 s−1, so as to reveal the deformation mode in bcc crystals, especially at high strain rate. Dislocation structure showed heterogeneous distribution at low strain rates in all three bcc metals examined. At higher strain rates exceeding 103 s−1, distribution of dislocations was random, and the formation of small dislocation loops was observed in V and Nb. In Mo, small dislocation loops were not formed by deformation, even at high strain rates. However, post-deformation annealing of an Mo specimen that had been deformed by 20% at 5×105 s−1 produced dislocation loops. The inside–outside contrast method identified these loops to be of vacancy type. These results reveal that in Mo vacancy clusters are not formed directly from the interaction of dislocations, but by the aggregation of vacancies. In V and Nb, the same formation process is believed to occur at high strain rates. These results suggest that the different mode of plastic deformation at high strain rates accompanied by production of vacancies also occurred in bcc metals.  相似文献   

19.
The dynamic Young’s modulus, E, of amorphous (a-) Zr60Cu30Al10 (numbers indicate at.%) alloy was measured as a function of frequency, f, with a strain amplitude, t, of 10−6, E(10−6,f), and also as a function of t for f near 102 Hz, E(t,102 Hz), by means of the vibrating reed methods. The elasticity study under the passing of electric current (PEC) was carried out too. E(10−6,f) is lower than E0 for f between 10 and 104 Hz showing local minima near 5×10, 5×102 and 5×103 Hz, which are indicative of the resonant collective motion of many atoms, where E0 is the static Young’s modulus. E(t,102 Hz) increases showing saturation with increasing t. Qualitatively, the outlines of E(10−6,f) and E(t,102 Hz) observed for a-Zr60Cu30Al10 are similar to those reported for various a-alloys. Quantitatively, a change in E(t,102 Hz) for a-Zr60Cu30Al10 is smallest among that reported for various a-alloys, presumably reflecting that the crystallization volume, (ΔV/V)x, is smallest for a-Zr60Cu30Al10. The effective charge number, Z*, estimated from the change in E(10−6,102 Hz) due to PEC is 3.0×105, which is comparable with Z* reported for various a-alloys. We surmise that the number of atoms in the collective motions excited near 102 Hz is similar among various a-alloys. The E(10−6,f) data suggest that the spatial sizes of the density fluctuations may show a distribution.  相似文献   

20.
The process of ion-activated oxygen adsorption on silicon has been investigated using an experimental concept with simultaneous deposition of silver films. Auger electron spectroscopy in combination with sputter depth profiling is subsequently performed to determine the amount of oxygen adsorbed at the Ag---Si interface. Noble gas ions (4He+, 20Ne+ and 40Ar+)with energies between 50 and 175 keV were used, and it was found that for substrate temperatures of 300–700 K the oxygen adsorption depends strongly on ion mass, ion energy and ion flux density. For flux densities of 5 × 1011 cm−2 s−1 or less, adsorption dominates and, in particular, for light-ion bombardment the majority of adsorbed oxygen atoms form chemical bonds with the silicon surface atoms (Si---O). However, for heavy ions, physical sputtering starts to compete and limits the effective rate of adsorption. At sufficiently high ion fluxes the adsorption starts to decrease, and for all ions and energies used in this work it is found that, if the electronic energy deposition density exceeds a critical value of about 1.2 × 1021 eV cm−2 s−1, dissociation of the Si---O bonds prevails with a corresponding loss in the adsorbed oxygen quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号