首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
压电陶瓷致动器具有体积小、推力大、高频响和分辨率高等特点,广泛应用于精密制造、光学仪器、振动控制等领域。为提高压电陶瓷型快速倾斜镜的控制精度和稳定性,根据压电陶瓷致动器对其驱动电源的要求,设计了一种基于高压运算放大器PA96的驱动电源。介绍了该电源电路的基本原理,并对放大器的外围电路进行了稳定性设计。最后通过实验测试表明,该电源线性度大于99%、静态纹波小于10mV、动态性能稳定,能够达到自适应光学系统中快速倾斜镜的控制要求。  相似文献   

2.
一种压电陶瓷执行器动态驱动电源   总被引:1,自引:1,他引:1  
针对压电陶瓷执行器呈现强容性负载的特性,该文研究了基于误差放大原理的压电陶瓷执行器动态驱动电源,提出采用高压运算放大器结合准互补对称功率放大电路构成的输出级以提高驱动电源的输出电压范围的方法和采用多组准互补对称功率放大电路构成的输出级并联以提高输出峰值功率的方法。通过对实际电路的测试表明,采用上述方法开发的压电陶瓷执行器动态驱动电源不仅输出功率达270 W,且具有良好的静态性能。  相似文献   

3.
压电陶瓷动态应用的新型驱动电源研究   总被引:18,自引:11,他引:18  
在分析现有直流放大压电陶瓷驱动电源原理及其局限性的基础上,提出了一种新型的压电陶瓷驱动电源,并给出了详细的电路原理图。对压电陶瓷进行的动态驱动实验表明,在输入为三角波、方波等动态信号,该驱动电源可以很好的跟限输入波形的变化,显示出优异的动态性能,可以满足科研实践中提出的需求。  相似文献   

4.
恒流源压电陶瓷驱动电源具有结构简单及频响好等优点,但静态功耗高是其突出缺点。该文提出了一种改进的恒流源压电陶瓷驱动电源,在静态功耗一定的情况下,提高了其动态输出能力及竞争能力。该改进型压电陶瓷驱动电源的样机具有2.4~300V的输出电压范围,在静态恒定电流为0.1A时,动态输出电流最大可达0.44A。基于恒流源的高压驱动电源,驱动电压主要由驱动管的耐压决定,原理上可得到远高于现有高压运放的水平,在高压压电陶瓷驱动方面有广阔的前景。  相似文献   

5.
压电陶瓷驱动电源是压电陶瓷微位移系统中的关键部件。以高压功率放大器PA93为核心,提出了一种新型高精度、大功率压电陶瓷驱动电源,适合驱动大行程、大推力压电陶瓷致动器。重点阐述了电路的设计方案,对复合放大电路进行了特性分析。实验结果表明,该驱动电源具有精度高,输出电压高,电流大,稳定性好的特点。当驱动等效负载电容为24 μF的压电陶瓷时,在0~100 Hz频率范围内实现了0~10 V信号到0~100 V信号的动态放大,输出电压精度优于3×10-5,最大输出电流350 mA。  相似文献   

6.
廖平  高广彬 《压电与声光》2018,40(4):539-542
为提升传统压电陶瓷驱动电源的效率与动态性能,以双N型金属 氧化物半导体场效应晶体管(MOSFET)降压拓扑为基础,设计了一种新颖的压电陶瓷脉冲驱动电源方案,并进行了理论分析与实验验证。电源系统中主电路对输入高压进行降压调节,采样网络实时地检测压电陶瓷的驱动电压与电流,通过闭环控制对输出电压进行调节。同时,为使压电陶瓷驱动电源具有良好的自动调节能力,引入了模糊比例 积分 微分(PID)控制算法,提高了驱动电源的动态性能。  相似文献   

7.
高速压电陶瓷驱动电源   总被引:1,自引:0,他引:1  
王元生  芦志强  王雨 《现代电子技术》2009,32(14):180-181,184
为了满足压电陶瓷致动器对驱动电源动态冲击特性的要求,提出一种新型的压电陶瓷驱动电源.用高速运放OP467作为核心芯片,搭建功率放大电路及恒流源泄放电路,并给出详细的电路原理图.实验表明,在输入为方波等动态信号时,该驱动电源可以良好地跟随输入波形变化,具有较高的上升和下降速率,频响范围可达到100 Hz~60 kHz.在同类型高压放大器中,其成本低廉,结构简单.  相似文献   

8.
朱婷 《电子科技》2016,29(5):13
在研究压电陶瓷微位移器的基础上,针对压电陶瓷的驱动特点和要求,设计了一种驱动电源。以单片机Atmega128和高压运算放大器PA78为核心器件,以及相关电路构成电压控制型驱动电源。介绍了主要模块电路的功能和实现,并对驱动电源进行测试实验。驱动电源可输出0~300 V连续电压,分辨率可达10 mV、静态纹波<5 mV。结果表明该电源具有线性度高、稳定性好、分辨率高等优点。  相似文献   

9.
根据压电陶瓷微位移器对驱动电源的需求,设计了压电驱动电源系统。详细介绍了电源系统中的数字电路部分和模拟电路部分,并对驱动电源的精度与稳定性进行了分析与改进。最后对驱动电源的性能进行了实验验证,实验结果表明:所设计的电源输出电压噪声低于0.43 mV、输出最大非线性误差低于0.024%、分辨率可达1.44 mV,能够满足高分辨率微位移定位系统中静态定位控制的需求。  相似文献   

10.
压电陶瓷(PZT)微位移器是近年发展起来的新型微位移器件,其具有体积小,推力大,精度高等特点,驱动电源是压电陶瓷微位移器应用中的关键部件.该文通过研究直接数字频率合成技术(DDS)及任意波形发生器的相关技术,采用现场可编程逻辑器件(FPGA)与单片机相结合的模式成功设计了PZT驱动电源.测量结果表明,所设计的驱动电路输出电阻小,负载能力大,电路结构简单可靠,响应速度快,有良好的动态性能.  相似文献   

11.
王乐蓉  韩森 《压电与声光》2020,42(3):312-316
为改善压电陶瓷驱动电源的静态功耗和动态性能,提出了可变静态工作点和工作电压的高压放大器。首先使用恒流源结构的放大器构成典型的高压放大器,然后通过比例微分电路动态调整放大器的工作电流,最后利用多组抽头电源给高压放大器分段供电,进一步降低系统功耗。实验结果表明,放大器在10 mA静态电流下,可以动态输出400 mA电流;放大器工作电压可以根据输出电压大小在50 V、100 V、150 V、210 V之间自动切换。放大器在很低的静态电流下可以获得很好的动态特性,满足设计要求。  相似文献   

12.
基于镜像电流源与电压源偏置的功率放大器   总被引:1,自引:1,他引:0  
张吕彦 《电声技术》2010,34(12):37-39,44
为了进一步提高音响功放的工作稳定性和性能,可采用镜像电流源代替输入级、推动级的集电极负载电阻,能提高功放电路的电压转换速率,采用电压源代替输出级的偏置电阻,使输出级工作于甲乙类状态,有利于提高工作的稳定性,降低非线性失真,功放的性能得到显著提高。而采用镜像电流源与电压源组成动态偏置电路,使输出级在小信号输入时工作在甲乙类状态,大信号输入时工作在甲类状态,既具备甲乙类功放的高效率、低失真,同时又能扩展放大器的动态范围,进一步降低大动态失真,取得明显的效果。  相似文献   

13.
在旋转元件进行动态测试过程中,信号传输以及测试元件供电需要电线由动态旋转状态装换为静态,这样信号以及供电才能顺利实现.在为电压信号测试过程中,信号较容易受到外界干扰,信噪比较低;需要一个微型并且稳定的多通道信号放大器对信号进行放大.本文利滑环,基于AD620微型放大器设计出一个三通道微型放大器电路来实现对信号的准确采集.  相似文献   

14.
为了提高大数值孔径投影物镜成像质量,需对镜片进行高精度微调.压电陶瓷是一种高精度定位的执行元件.根据电压控制型压电陶瓷驱动电源的原理,利用运算放大器PA88和OPA2227构成的高压运放式复合放大电路,设计了一种高精度的压电陶瓷驱动器,用于驱动镜片的精密微调.详细阐述了驱动器和供电电源的设计原理,并运用Multisim10软件对该驱动器的输出电压、线性度、静态纹波及稳定性进行了仿真分析.结果表明,该驱动器具有输出精度高,最大非线性误差为0.0005%,静态纹波小(±100 nV),稳定性强等优点,达到了投影物镜中镜片微调要求.  相似文献   

15.
提出一种改进型高性能单端电荷泵电路 ,该电路基于电流舵结构 ,使用运放将偏置电路与充放电电路分开。该电路具有低的输出抖动、宽的电源范围 ,使用级连电流镜像消除过冲注入电流。基于 CMOS0 .3 5工艺 ,用 SPECTRE对该电路进行仿真 ,改进后的电路可消除 1.2 m A的注入电流 ,稳定工作在 2 5 /12 .5 MHz下 ,其最低工作电压为 2 .2 V,静态功耗为 0 .44m A,达到设计目标。  相似文献   

16.
提出的超宽带射频发射机的结构具有良好的效率和线性度。设计和制作了一款宽带的动态栅压偏 置的功率放大器。动态栅压偏置可以获得优良的宽带性能。总发射机可以支持184.32 MHz 的调制带宽。基带信 号和相关偏置电压由宽带模拟基带处理单元生成。基带信号经过直接变频的调制方式到达功放输入端,偏置电压 经过差分运放以及延时电路到达功放栅极。实验结果表明,与传统A 类功放相比,动态栅压偏置可以增加系统的效 率和线性度。  相似文献   

17.
基于高性能升压转换器的跨导误差放大器   总被引:1,自引:0,他引:1  
在分析峰值电流模式升压转换器原理的基础上,设计了一种结构新颖,高精度高性能跨导误差放大器。提出了将具有动态电流自补偿功能的基准电压电路复用为误差放大器输入级的新方法,克服了传统外接基准电压时误差放大器易受干扰和基准电路设计复杂的缺点,提高了误差信号精度和放大器跨导。设计了输出电阻可调电路,简化了补偿网络设计。电路用0.6μmBiCMOS工艺实现,测试表明:3V输入电压,1.2MHz工作频率下,误差放大器开环电压增益57dB,跨导322μS,输入偏置电流小于50nA;升压转换器输出电压15V,输出纹波小于5mV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号