共查询到20条相似文献,搜索用时 8 毫秒
1.
一种低电压的CMOS带隙基准源 总被引:5,自引:6,他引:5
设计了一种用于集成电路内部的带隙基准源,采用了1.0V/0.18μmCMOS工艺。该电路利用电阻分压和高阶温度补偿,达到降低温度率数的目的,并具有好的电源抑制比。SPICE仿真结果表明,在0℃-100℃范围内度可达到18ppm/℃,其电源抑制比可达到62dB。 相似文献
2.
传统带隙基准源电路采用PNP型三极管来产生ΔVbe,此结构使运放输入失调电压直接影响输出电压的精度。文章在对传统CMOS带隙电压基准源电路原理的分析基础上,提出了一种综合了一阶温度补偿和双极型带隙基准电路结构优点的高性能带隙基准电压源。采用NPN型三极管产生ΔVbe,消除了运放失调电压影响。该电路结构简洁,电源抑制比高。整个电路采用SMIC 0.18μmCMOS工艺实现。通过Cadence模拟软件进行仿真,带隙基准的输出电压为1.24V,在-40℃~120℃温度范围内其温度系数为30×10-6/℃,电源抑制比(PSRR)为-88 dB,电压拉偏特性为31.2×10-6/V。 相似文献
3.
4.
描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路。基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路。采用SMIC 0.18μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5mV,温度系数不超过7×10-6/℃。低频下的电源抑制比为-107dB,在10kHz下,电源抑制比可达到-90dB。整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05mW。 相似文献
5.
6.
一种10-ppm/℃低压CMOS带隙电压基准源设计 总被引:10,自引:0,他引:10
在对传统CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈和电阻二次分压技术,提出了一种10-ppm/℃低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路的设计,放大器的输出用于产生自身的电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC 0.35μm CMOS工艺实现,采用Hspice进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。 相似文献
7.
8.
设计了一种基于反馈电路的基准电压电路。通过正、负两路反馈使输出基准电压获得了高交流电源抑制比(PSRR),为后续电路提供了稳定的电压。采用NPN型三极管,有效消除了运放失调电压对带隙基准电压精度产生的影响,并对电路进行温度补偿,大大减小了温漂。整个电路采用0.35μm CMOS工艺实现,通过spectre仿真软件在室温27℃、工作电压为4 V的条件下进行仿真,带隙基准的输出电压为1.28 V,静态电流为2μA,在-20~80℃范围内其温度系数约为18.9×10-6/℃,交流PSRR约为-107 dB。 相似文献
9.
本文提出了一种采用0.25μm CMOS工艺的高性能的带隙基准参考源。该电路结构简单,性能较好。用模拟软件进行仿真,在tt模型下,其温度系数为9.6 ppm/℃,电源抑制比(PSRR)为-56 dB,电压拉偏特性为384 ppm/V。而在其它模型下,也有较低的温度系数和较高的电源抑制比。 相似文献
10.
介绍一种用于LCD驱动中的带隙基准电压源,采用Chartered 3.3V 0.35μm 18V高压CMOS工艺,产生5个不同的负温度系数.以便于LCD panel的选择。电源工作范围2.4V~3.6V,工作温度范-40%~85%。 相似文献
11.
针对传统一阶温度补偿的CMOS带隙基准电压源的温度特性较差,本文在此基础上采用高阶温度补偿以改善温度特性,并且在电路中增加了带有负反馈的前调整器,提高了基准电压的电源抑制比。对电路采用SMIC0.18CMOS工艺进行仿真,输出电压在温度为-20~~58。c范围内有负的温度系数2.34ppm/。c,在温度为58~~120范围内有正的温度系数为2.21ppm/。C,在低频时电源抑制比可达116dB,在10K也可达到73dB。 相似文献
12.
13.
基于SMIC 65 nm CMOS工艺,设计了一种带曲率补偿的低压高电源抑制比(PSRR)带隙基准电压源。采用带曲率补偿的电流模结构,使输出基准电压源低于1.2 V且具有低温漂系数。在基本的带隙基准电路基础上,增加基准核的内电源产生电路,显著提高了电路的PSRR。采用Cadence Spectre软件,在1.8 V电压下对电路进行仿真。结果表明,在1 kHz以下时,PSRR为-95.76 dB,在10 kHz时,PSRR仍能达到88.51 dB,在-25 ℃~150 ℃温度范围内的温度系数为2.39×10-6 /℃。 相似文献
14.
15.
基于SMIC 0.18 μm CMOS工艺,设计了一种高阶温度补偿的带隙基准电压源。采用源极、漏极与栅极短接的PMOS管替代传统基准电压源中的PNP管,增加了高温区域曲率补偿电路和低温区域温度分段补偿电路。该带隙基准电压源获得了低温漂的性能。仿真结果表明,在-40 ℃~125 ℃温度范围内,该带隙基准电压源的温度系数达到1.997×10-6/℃,在频率为1 Hz、10 Hz、100 Hz、1 kHz、100 kHz时,分别获得了-77.84 dB、-77.84 dB、-77.83 dB、-77.42 dB、-48.05 dB的电源抑制比。 相似文献
16.
17.
18.
设计了一种宽电源电压的高精度带隙基准电路.在综合考虑精度、电源抑制比(PSRR)、宽电源电压要求和功耗等因素的基础上,采用了一种由基准电压偏置的,增益和电源抑制比大小相近的运算放大器解决方案.设计采用CSMC 0.5μm CMOS工艺,电源为3.3V. Cadence Spectre 仿真表明,当温度在 -40 ℃~125 ℃,电源电压在2.56V~8V时,输出基准电压平均值为1.290V,变化0.793mV,有效温度系数为3.72ppm/ ℃;室温下,在低频时具有-97dB的PSRR,在100kHz时为-69dB,功耗为180μW. 相似文献
19.
20.
高性能带隙基准电压源的设计 总被引:1,自引:0,他引:1
本文基于带隙基准电压源的工作原理,实现了一种利用PATA电流产生基准电压的高性能带隙基准源。该带隙基准源温度特性良好,具有较高精度的输出电压,所以使电源管理芯片的工作电压具有更小的温度系数,使芯片工作更稳定。利用Candance仿真器,基于CSMCO.5umCMOSI艺对电路进行仿真,对基准源进行仿真与分析。仿真结果表明,当R2=316时,基准电压有最好的温度特性;并运用cadence软件中的“Calculator”工具计算出在该温度时,带隙基准电压源有最小的温漂系数。 相似文献