首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New asymmetrically highly twisted anthracene derivatives serve as a matched host and guest material in high efficiency blue OLEDs. 2-(2-Methylnaphtathalene-1-yl)-9,10-di(naphthalene-2-yl)anthracene and N-(4-(10-naphthalene-2-yl)anthracene-9-yl)phenyl-N-phenylnaphthalene-2-amine were prepared as host material and as guest material, respectively. Multilayer organic electroluminecent devices constructed using these foregoing twisted anthracene derivatives as the emitting layer gave quantum efficiencies of 5% and exhibited a pure blue emission with CIE chromaticity coordinates x = 0.15, y = 0.14-0.18.  相似文献   

2.
Peihua Ren 《Polymer》2009,50(20):4801-5711
We report the synthesis and optoelectronic properties of highly soluble poly(9,10-bis(3′,4′-di(2″-ethylhexyloxy))phenyl)-2,6-anthracenevinylene) (HSM-PAV). The key intermediate for the synthesis of HSM-PAV is 2,6-dimethyl-9,10-dibromoanthracene, and the high solubility of HSM-PAV is from the incorporation of lateral 3,4-di(2-ethylhexyloxy)phenyl moieties into the 9,10-positions of anthracene units. The increase of side alkyloxy groups endows HSM-PAV with higher molecular weight (Mn = 3.2 × 104) and better electroluminescence performances (Lmax = 590 cd/m2, LEmax = 0.27 cd/A) compared with the poly(2,6-anthracenevinylene) with lateral monoalkyoxy moieties (Mn = 1.9 × 104, Lmax = 340 cd/m2, LEmax = 0.17 cd/A). The electrical conductivity of doped HSM-PAV film with iodine is 5 × 10−2 S cm−1 that is several order higher than that of doped 9,10-anthracene-based polymers, further demonstrating that linkage position has a dramatic effect on the optoelectronic properties of anthracene-based conjugated polymers.  相似文献   

3.
Two donor-acceptor-donor types of π-conjugated monomers were synthesized using Stille coupling reaction. Both monomers were found to produce electroactive polymers upon electrochemical oxidation. The effects of different donor substituents on the polymers' electrochemical and spectroelectrochemical properties were examined. Optical characterization revealed that the band gaps of poly(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-7-yl)-5,8-di(thiophen-2-yl)quinoxaline) (PDBQTh) and poly(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-7-yl)-5-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-8-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)quinoxaline) (PDBQEd) were 1.5 eV and 1.3 eV, respectively. PDBQEd reveals two distinct absorption bands as expected for this type of donor-acceptor-donor polymer at 423 and 738 nm, while PDBQTh has a single absorption band at 630 nm. The colorimetry analysis revealed that while PDBQTh has a blue color, PDBQEd showed a green color in the neutral state. PDBQEd revealed reversible n-doping.  相似文献   

4.
Yun-Hi Kim  Hong You 《Polymer》2005,46(19):7969-7973
A blue electroluminescent polymer, random copolymer of fluorenylstilbene and fluorene, was prepared by the nickel catalyzed coupling reaction. The structure and properties of the copolymer were analyzed by various spectroscopic methods. The obtained polymer had good solubility and thermal stability with high Tg. The polymer in thin film emits strong blue luminance (max=468 nm) with narrow bandwidth upon photoexcitation. PL spectrum of the polymer in the film is almost consistent with that of solution one as well as the EL spectrum, indicating that the aggregation and the excimer fluorescence are suppressed by the introduction of fluorenylstilbene comonomer. Moreover, the introduction of fluorenylstilbene comonomer lowered the oxidation potential to lead feasible hole injection, when the compared with poly(fluorene) homopolymer. The ITO/PEDOT/polymer/LiF/Al device showed the maximum brightness of 3500 cd/m2 with a turn on voltage of 4.4, the maximum efficiency of 0.878 lm/W and blue emission with CIE chromaticity coordinates of ((x,y)=(0.17, 0.25)).  相似文献   

5.
In this study, the properties of blue organic light-emitting diodes (OLEDs), employing quantum well-like structure (QWS) that includes four different blue emissive materials of 4,4′-bis(2,2′-diphenylyinyl)-1,1′-biphenyl (DPVBi), 9,10-di(naphth-2-yl)anthracene (ADN), 2-(N,N-diphenyl-amino)-6-[4-(N,N-diphenyl amine)styryl]naphthalene (DPASN), and bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato) aluminum (BAlq), were investigated. Conventional QWS blue OLEDs composed of multiple emissive layers and charge blocking layer with lower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy level, and devices with triple emissive layers for more significant hole-electron recombination and a wider region for exciton generation were designed. The properties of triple emissive layered blue OLEDs with the structure of indium tin oxide (ITO) /N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) (700 Ǻ)/X (100 Ǻ)/BAlq (100 Ǻ)/X (100 Ǻ)/4,7-diphenyl-1,10-phenanthroline (Bphen) (300 Ǻ)/lithium quinolate (Liq) (20 Ǻ)/aluminum (Al) (1,200 Ǻ) (X = DPVBi, ADN, DPASN) were examined. HOMO-LUMO energy levels of DPVBi, ADN, DPASN, and BAlq are 2.8 to 5.9, 2.6 to 5.6, 2.3 to 5.2, and 2.9 to 5.9 eV, respectively. The OLEDs with DPASN/BAlq/DPASN QWS with maximum luminous efficiency of 5.32 cd/A was achieved at 3.5 V.  相似文献   

6.
A series of copolymers (CNPFs) containing low-band-gap 1,8-naphthalimide moieties as color tuner was prepared by a Yamamoto coupling reaction of 2,7-dibromo-9,9-dioctylfluorene (DBF) and different amount of 4-(3,6-dibromocarbazol-9-yl)-N-(4′-tert-butyl-phenyl)-1,8-naphthalimide (Br-CN) (0.05-1 mol% feed ratio). The light emitting properties of the resulting copolymers showed a heavy dependence on the feed ratio. In photoluminescence (PL) studies, an efficient color tuning through the Förster energy transfer mechanism was revealed from blue to green as the increase of Br-CN content, while in electroluminescence (EL) studies, the color tuning was found to go through a charge trapping mechanism. It was found that by introduction of a very small amount of Br-CN (0.1-0.5 mol%) into polyfluorene, the emission color can be tuned from blue to pure green with Commission International de l'Echairage (CIE) coordinates being (0.21, 0.42) and (0.21, 0.48). A green emitting EL single-layer device based on CNPF containing 0.1 mol% of Br-CN showed good performances with a low turn-on voltage of 4.2 V, a brightness of 9104 cd/m2, the maximum luminous efficiency of 2.74 cd/A and the maximum power efficiency of 1.51 lm/W. To further improve the EL performances through balancing the charge trapping process, a copolymer (BCNPF05) derived from 0.5 mol% of a triarylamine-containing 4-{3,6-bis-[4″-(4?-bromophenyl-p-tolyl-amino)-phenyl]-carbazol-9-yl}-N-(4′-tert-butyl-phenyl)-1,8-naphthalimide (Br-BCN) and 99.5 mol% of 2,7-dibromo-9,9-dioctylfluorene was also prepared. As expected, a single layer EL device based on BCNPF05 exhibited better performances with a brightness of 14228 cd/m2, the maximum luminous efficiency of 4.53 cd/A and the maximum power efficiency of 1.57 lm/W.  相似文献   

7.
Electrochromic properties of a novel low band gap conductive copolymer   总被引:1,自引:0,他引:1  
A copolymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) with 3,4-ethylene dioxythiophene (EDOT) was electrochemically synthesized. The resultant copolymer P(DTTP-co-EDOT) was characterized via cyclic voltammetry, FTIR, SEM, conductivity measurements and spectroelectrochemistry. Copolymer film has distinct electrochromic properties. It has four different colors (chestnut, khaki, camouflage green, and blue). At the neutral state λmax due to the π-π* transition was found to be 487 nm and Eg was calculated as 1.65 eV. Double potential step chronoamperometry experiment shows that copolymer film has good stability, fast switching time (less than 1 s) and good optical contrast (20%).An electrochromic device based on P(DTTP-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) was constructed and characterized. The device showed reddish brown color at −0.6 V when the P(DTTP-co-EDOT) layer was in its reduced state; whereas blue color at 2.0 V when PEDOT was in its reduced state and P(DTTP-co-EDOT) layer was in its oxidized state. At 0.2 V intermediate green state was observed. Maximum contrast (%ΔT) and switching time of the device were measured as 18% and 1 s at 615 nm. ECD has good environmental and redox stability.  相似文献   

8.
Two dithienylpyrroles based on azo dyes, namely 2,5′-dimethyl-[4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenyl]azobenzene (SNS-AB2) and 2,5′-dimethyloxy-[4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenyl]azobenzene (SNS-AB3), were synthesized and their corresponding polymers (PSNS-AB2 and PSNS-AB3) were successfully obtained via electropolymerization. The monomers have lower oxidation potentials (0.75 V and 0.80 V vs. Ag/AgCl for SNS-AB2 and SNS-AB3, respectively) when compared to their analogous. Both monomers exhibited photoisomerism properties under irradiation at 360 nm. During the irradiation process, for example, the color of SNS-AB3 changes from yellow to greenish yellow. The electroactive polymer films have well defined and reversible redox couples with a good cycle stability in both aqueous and organic solutions. The polymer films also exhibited electrochromic behaviors; color changes from yellowish green to dark green for the PSNS-AB2 (λmax = 435 nm and Eg = 2.31 eV) and from mustard color to green for PSNS-AB3 (λmax = 430 nm and Eg = 2.34 eV). Furthermore, the soluble polymers demonstrated different hues of yellow and green colors.  相似文献   

9.
Jung-Feng Lee 《Polymer》2009,50(24):5668-12390
A novel series of green light emitting single polymers were prepared by end-capping of N-aryl-1,8-naphthalimide and 1,8-naphthoilenearylimidazole derivatives into polyfluorene. The electroluminescence (EL) spectra of polymers (P1 ∼ P5) exhibit greenish-blue, bluish-green, pure green, and yellowish-green emission (λmax = 465 nm, 490 nm, 500 nm, and 545 nm, respectively) from compounds (M1 ∼ M5). It was found that by the introduction of a small amount of compounds (M1 ∼ M5) (5 mol-%) into polyfluorene, the emission color can be tuned from the blue to green region. The color tuning was found to have gone through charge trapping and Förster energy transfer. The device of P4 emits pure green light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.20, 0.41), and exhibits a maximum brightness of 11500 cd/m2 at 12 V with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. The device of P5 emits yellowish green light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.36, 0.56), and exhibits a maximum brightness of 6534 cd/m2 at 17 V.  相似文献   

10.
A novel triarylaminooxadiazole-containing tetraphenylsilane light-emitting polymer (PTOA) has been synthesized. Excellent thermal stability was observed due to the presence of a rigid tetraphenylsilane-based polymer backbone (Tg = 218 °C, Td = 373 °C). In solution, PTOA shows photoluminescence (PL) with an emission maximum at 426 nm, which is attributed to the light-emitting unit of the triarylaminooxadiazole group. In solid film, the emission maximum of PL is observed at 458 nm, a 32 nm red-shift from the PL in solution. The solvatochromic effect and excimer formed in the solid film are responsible for the red-shifting and broadening of the PL emission band. The PL stability and morphology of the PTOA solid film were further investigated by thermal annealing at elevated temperatures. No significant difference in the PL spectra or morphology was observed between a pristine sample and a repeatedly thermally annealed film (at 200 °C). PTOA-based PLED shows EL with a main peak at 458 nm accompanied by a shoulder at around 530 nm. The light emission from electromer or electroplex leads to a broadening of the EL spectra (400-650 nm), which corresponds to the interaction between the oxadiazole and diphenyl(4-tolyl)amine groups in different polymer segments or chains. A sky blue emission (Commission Internationale de L'Eclairage (CIEx,y) coordinates (0.20,0.23)) was obtained for PTOA-based PLED. The brightness and efficiency of the PLED can be as high as 248 cd/m2 and 0.54 cd/A, respectively. The EL of PTOA-based PLED has been further improved by blending the PTOA with poly(n-vinylcarbazole) (PVK) in different concentrations. The effects of concentration on the PL and EL were studied for the PTOA-PVK composite film-based PLEDs.  相似文献   

11.
A novel electroactive monomer 5,8-di(1H-pyrrol-2-yl)-2,3-di(thiophen-2-yl)quinoxaline (PTQ) was successfully synthesized and its electrochromic properties were reported. Nuclear magnetic resonance (1H NMR-13C NMR) and mass spectroscopy were used to characterize the monomer. The monomer was electrochemically polymerized in the presence of tetrabutylammonium perchlorate (TBAP) as supporting electrolyte in dichloromethane. Monomer reveals relatively low oxidation potential at +0.70 V. Spectroelectrochemical behaviors and switching ability of homopolymer were investigated by UV-vis spectroscopy and cyclic voltammetry. Two π-π* transitions were observed at 400 and 815 nm with a low band gap, 1.0 eV. Polymer possesses 66% optical contrast in the Near IR region, which may be promising in NIR electrochromic device applications.  相似文献   

12.
A new blue-light emitting polymer that alternates between fluorene and alkoxynaphthalene structure has been developed. The fluorene and naphthalene units were highly distorted with an angle of 76.22° according to theoretical calculations. The obtained polymer has a weight average molecular weight of 273,800 with a polydispersity index of 2.35, good solubility and high thermal stability with a Tg of 176 °C. The film photoluminescence (PL) spectrum (405 nm) is consistent with that of solution and the PL spectra of the polymer did not show any peak in the long wavelength region even after annealing for 24 h at 100 °C. The double-layered device with an ITO/PEDOT/polymer/LiF/Al structure has a turn-on voltage of about 5.4 V, maximum brightness of 110 cd/m2 and an electroluminescent efficiency of 0.09 cd/A. The OLED generates pure blue EL emission (λmax = 405 nm) with excellent CIE coordinates (x = 0.15, y = 0.10) as well as stable blue EL emission that is not altered by voltage increase.  相似文献   

13.
Novel aromatic polypyromellitimides bearing (n-alkyloxy)biphenyloxy side chains were prepared by two-step polycondensation of 1,4-phenylenediamine (PDA) and biphenyl-4,4′-diamine (BZ) with 3,6-bis[4′-(n-alkyloxy)biphenyl-4-oxy]pyromellitic dianhydrides (CmB-PMDAs, m = 6, 8, 10, 12), which had been synthesized by the nucleophilic substitution of N,N′-diphenyl-3,6-dibromopyromellitimides with sodium 4-(n-alkyloxy)biphenoxides. Inherent viscosities of the poly(amic acid)s were in the 0.26-0.62 dL/g range. Poly{1,4-phenylene-3,6-bis[4′-(n-alkyloxy)biphenyl-4-oxy]pyromellitimide}s (CmB-PPIs) and poly{4,4′-biphenyl-3,6-bis[4′-(n-alkyloxy)biphenyl-4-oxy]pyromellitimide}s (CmB-BPIs) obtained in films by thermal imidization of the corresponding poly(amic acid)s were characterized by FT-IR spectroscopy and elemental analysis, and their crystalline structure and thermal properties were measured and discussed with respect to the side chain length. After the polyimide films were surface-treated by rubbing with velvet fibers, standard liquid crystal (LC) cells containing 4-cyano-4′-n-pentylbiphenyl (5CB) were fabricated and their LC-aligning properties were investigated in terms of pretilt angle. The pretilt angles were remarkably affected by side chain length and on surface of the polyimides with m = 6 and 8 LCs aligned parallel to the rubbing direction while on surface of the polyimides with m = 10 and 12 they aligned nearly or completely vertical to the rubbing direction.  相似文献   

14.
A new series of processable conducting polymers based on thienylpyrrole was synthesized by electrochemical polymerization of 1-(1-naphthyl)-2,5-di(thiophen-2-yl)-1H-pyrrole, 1-(2-naphthyl)-2,5-di(thiophen-2-yl)-1H-pyrrole, 1-(9H-fluoren-2-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole and 1-(benzo-15-crown-5)-2,5-di(thiophen-2-yl)-1H-pyrrole. The corresponding polymers have very well-defined and reversible redox processes in both organic and aqueous solutions. Furthermore, they exhibit multielectrochromic behavior: yellow in the neutral state, green and blue in the intermediate state and violet in the oxidized state. The polymer products are soluble in organic solvents and all of them are fluorescent.  相似文献   

15.
Jung-Feng Lee 《Polymer》2009,50(12):2558-288
A novel series of blue and yellowish-green light-emitting single polymers were prepared by end-capping of low contents of 4-bromo-7H-benzo [de]naphtha[2′,3′:4,5]imidazo[2,1-a]isoquinolin-7-one (M1) into polyfluorene. Electroluminescence (EL) spectra of these polymers exhibit blue emission (λmax = 430/460 nm) from the fluorene segments and yellowish-green emission (λmax = 510/530 nm) from the M1 units. For the polymer (PFNAP-0.06) with the M1 unit content of 0.06 mol-%, its EL spectrum shows balanced intensities of blue emission and yellowish-green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.34). The maximum brightness of the device prepared from the polymer (PFNAP-0.06) is 6704 cd/m2 at 10 V with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. A new white polymer-light-emitting-diode (WPLED) can be developed from the single polymer (PFNAP-0.06) system blended with a red phosphorescent iridium complex [Bis(2-[2′-benzothienyl)-pyridinato-N,C3′] iridium (acetylacetonate) (BtpIr)]. We were able to obtain a white-light-emission device by adjusting the molar ratio of BtpIr to PFNAP-0.06 with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. The brightness in such a device configuration is 4030 cd/m2 at 9 V with CIE coordinates of (0.32, 0.34).  相似文献   

16.
A processable rainbow mimic fluorescent polymer (PSNSF) based on 1-(9H-fluoren-2-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole (SNSF) was synthesized via electrochemical polymerization in a mixture of ethanol and CH2Cl2 solution containing 0.1 M LiClO4. Characterization was carried out using cyclic voltammetry, UV-vis and FT-IR spectroscopic techniques. Also, an electrochromic device based on PSNSF was studied, which exhibits high coloration efficiency (CE), high redox stability (retaining 98.6% of its optical activity after 4000th switch) and very low response time (less than 0.5 s).  相似文献   

17.
Kadir Aydemir 《Polymer》2008,49(8):2029-2032
A novel selenophene-based monomer, 1,4-di(selenophen-2-yl)-benzene (DSB), was synthesized via Stille coupling reaction of 1,4-dibromobenzene and tributyl(2-selenophenyl)stannane. Conducting polymer (PDSB) was prepared electrochemically in the presence of tetrabutylammonium hexafluorophosphate (TBAPF6) as the supporting electrolyte in dichloromethane (DCM). The resulting conducting polymer was characterized by Cyclic Voltammetry, Fourier Transform Infrared and Ultraviolet-visible spectroscopy. Spectroelectrochemistry analysis and kinetic studies of PDSB revealed a π-π transition at 340 nm with a striking and rapid (0.6 s) transmittance change (35%), at near infrared region (1250 nm), indicating that PDSB is a very suitable near infrared electrochromic material.  相似文献   

18.
Electrochromic devices incorporating an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film and a free standing, transparent film of a proton conducting polymer electrolyte with high ambient temperature ionic conductivity of 10−2 S cm−1 have been fabricated with and without the ion storage electrodeposited Prussian blue (PB) counter electrode layer. While coloration efficiency increases as a function of applied potential in the sole PEDOT device with largest values of CE(max,VIS) ∼ 120 cm2 C−1 and CE(max,NIR) ∼ 133 cm2 C−1 attained at Vc = −1.9 V, the PEDOT:PB device shows a digression from this trend. Much higher coloration efficiencies in the visible (247 cm2 C−1 at 570 nm) and NIR (116 cm2 C−1 at 1100 nm) regions are achieved for the PEDOT:PB device at a relatively lower reducing voltage of −0.8 V. The PEDOT:PB device shows fast switching redox process (tc = 2.6 s and tb = 1.3 s for a 50% optical contrast at 632.8 nm) and a highly reversible charge density as the ratio of Qinserted to Qextracted was found to vary between 0.8 and 1.0. When switched between the clear and blue states for 2000 cycles, the insignificant drop in peak current density maxima observed for the PEDOT:PB device, i.e. the good cycling stability, the facile fabrication of device assembly, the ease of scaling up the electrolyte and electrochromic coatings, indicate that this method can be adapted as a simple and inexpensive alternative to conventional electrochromic windows with high cost components.  相似文献   

19.
Phenanthrene α-end-labeled poly(N-decylacrylamide-b-N,N-diethylacrylamide) (PDcAn-b-PDEAm) block copolymers consisting in a highly hydrophobic block (n = 11) and a thermoresponsive block with variable length (79 ≤ m ≤ 468) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. A new phenanthrene-labeled chain transfer agent (CTA) was synthesized and used to control the RAFT polymerization of a hydrophobic acrylamide derivative, N-decylacrylamide (DcA). This first block was further used as macroCTA to polymerize N,N-diethylacrylamide (DEA) in order to prepare diblock copolymers with the same hydrophobic block of PDcA (number average molecular weight: Mn = 2720 g mol−1, polydispersity index: Mw/Mn = 1.13) and various PDEA blocks of several lengths (Mn = 10,000-60,000 g mol−1) with a very high blocking efficiency. The resulting copolymers self-assemble in water forming thermoresponsive micelles. The critical micelle concentration (CMC) was determined using Förster resonance energy transfer (FRET) between phenanthrene linked at the end of the PDcA block and anthracene added to the solution at a low concentration (10−5 M), based on the fact that energy transfer only occurs when phenanthrene and anthracene are located in the core of the micelle. The CMC (∼2 μM) was obtained at the polymer concentration where the anthracene fluorescence intensity starts to increase. The size of the polymer micelles decreases with temperature increase around the lower critical solution temperature of PDEA in water (LCST ∼ 32 °C) owing to the thermoresponsiveness of the PDEA shell.  相似文献   

20.
A series of Ba2Mg1−xMnxP4O13 (x = 0-1.0) and Ba1.94Eu0.06Mg1−xMnxP4O13 (x = 0-0.15) phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), the photoluminescence spectra, and the decay curves are investigated. XRD analysis shows that the maximum tolerable substitution of Mn2+ for Mg is about 50 mol% in Ba2MgP4O13. Mn2+-singly doped Ba2MgP4O13 shows weak red-luminescence peaked at about 615 nm. The Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 430 nm originating from Eu2+ and a broad red-emitting one peaked at 615 nm from Mn2+ ions. The luminescence of Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ in Ba2MgP4O13. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. The emission colors could be tuned from the blue to the red-purple and eventually to the deep red. The resonance-type energy transfer via a dipole-quadrupole interaction mechanism is supported by the decay lifetime data. The energy transfer efficiency and the critical distance are calculated and discussed. The temperature dependent luminescence spectra of the Eu2+/Mn2+ co-doped phosphor show a good thermal stability on quenching effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号