首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Torsion fatigue tests have been conducted at 20 kHz ultrasonic fatigue testing systems, and compared to the torsion fatigue data generated on 35 Hz conventional fatigue test machine to determine if there are any frequency effects, for steels including D38MSV5S steel and 100C6 steel. Results indicated that the S-N curves exhibit decrease in fatigue strength beyond 107 cycles. The initiation in the Gigacycle regime is related to defects sometimes located beneath the surface which shows a competition between the maximum shear at the surface and the stress concentration under the surface, even in torsion.  相似文献   

2.
A general probabilistic life prediction methodology for accurate and efficient fatigue prognosis is proposed in this paper. The proposed methodology is based-on an inverse first-order reliability method (IFORM) to evaluate the fatigue life at an arbitrary reliability level. This formulation is different from the forward reliability problem, which aims to calculate the failure probability at a fixed time instant. The variables in the fatigue prognosis problem are separated into two categories, i.e., random variables and index variables. An efficient searching algorithm for fatigue life prediction is developed to find the corresponding index variable at a certain confidence level. Numerical examples using direct Monte Carlo simulation and the proposed IFORM method are compared for algorithm verification. Following this, various experimental data for metallic materials are used for model prediction validation.  相似文献   

3.
4.
In stress-controlled constant amplitude and service loading tests at ambient temperature mechanical stress-strain hysteresis, temperature and electrical resistance measurements were performed to characterize the fatigue behavior of the quenched and tempered steel SAE 4140. The applied measurement methods use deformation-induced changes of the microstructure in the bulk material and represent the actual fatigue state. A new test procedure combines any kind of load spectra with periodically inserted constant amplitude sequences to measure the plastic strain amplitude, the change in temperature and the change in electrical resistance at the same time. The average values of the measuring sequences are plotted as function of the number of cycles in cyclic ‘deformation’ curves and represent the summation of microstructural changes caused by service loading. On the basis of generalized Morrow and Basquin equations the physically based fatigue life calculation method “PHYBAL” was developed for constant amplitude and service loading. With only three fatigue tests, Woehler (S–N) and fatigue life curves can be calculated in very good agreement with experimental ones determined in a conventional manner. The application of “PHYBAL” provides an enormous saving of experimental time and costs.  相似文献   

5.
In this paper, a new model for the prediction of the cumulative distribution function of fatigue life of structural elements during the crack propagation stage is established. This problem is considered as a cumulative damage process following the probabilistic approach of Bogdanoff and Kozin (B-models). The initial and final crack lengths, the crack propagation angle, the material fracture and elastic parameters and the external loads have been the random variables considered here. The theoretical bases of the model and the procedure to construct it are described in the forthcoming paragraphs such as several examples for mode I problems including the comparison with experimental results.  相似文献   

6.
To analyze the reasons of fluid cylinders’ rupture, macro-analysis, SEM, composition inspection, metallographic analysis, hardness test and mechanics performance test of fluid cylinders materials were implemented. Two different kinds of fatigue life prediction methods have been proposed which are based on total life analysis and strain–life methodology. The results indicate that: the failure cylinders’ material quality is satisfactory. Fatigue damage caused by high working, stress and corrosion is the main reason of cracking. The fatigue life prediction illustrates that strain–life methodology is well adapted to fluid cylinders.  相似文献   

7.
Fatigue experiments were carried out in laboratory air using an extruded magnesium alloy, AZ31, to investigate the effect of load ratio on the fatigue life and crack propagation behavior. The crack propagation behavior was analyzed using a modified linear elastic fracture mechanics parameter, M. The relation crack propagation rate vs. M parameter was found to be useful in predicting fatigue lives at different R ratios. Good agreement between the estimated and the experimental results at each stress ratio was obtained.  相似文献   

8.
The present paper deals with the effect of uncertainties on the prediction of fatigue failure of aerospace and mechanical components. Typically the design of such structures has been based on costly experiments or modified versions of Paris’ law which are applicable to very restricted range of conditions. The present formulation employs cohesive zone elements in order to resolve the fractured zone in combination with an extrapolation scheme that makes the analysis over hundred of thousands of cycles computationally efficient. The effect of randomness in the cohesive strength is examined with respect to the total lifetime of the specimen.  相似文献   

9.
A new unified fatigue life model based on the energy method is developed for unidirectional polymer composite laminates subjected to constant amplitude, tension–tension or compression–compression fatigue loading. This new fatigue model is based on static failure criterion presented by Sandhu and substantially is normalized to static strength in fiber, matrix and shear directions. The proposed model is capable of predicting fatigue life of unidirectional composite laminates over the range of positive stress ratios in various fiber orientation angles. By using this new model all data points obtained from various stress ratios and fiber orientation angles are collapsed into a single curve.

The new fatigue model is verified by applying it to different experimental data provided by other researchers. The obtained results by the new fatigue model are in good agreements with the experimental data of carbon/epoxy and E-glass/epoxy of unidirectional plies.  相似文献   


10.
In this paper the fatigue performance of tensile steel/CFRP (Carbon Fibre Reinforced Polymer) double shear lap joints is discussed. Joints were realized with two steel plates and two CFRP strips bonded using epoxy adhesive. Fatigue tests were performed on 16 specimens under constant stress range loading cycles. Two stress ratios (R = 0.1 and R = 0.4) were considered to investigate their influence on the fatigue lifetime. Debonding was observed to occur at stress concentration zones and propagate along the CFRP/adhesive interfaces. The stiffness degradation of the steel joint due to progressive debonding of the adhesive represents an index for the subsequent and progressive global failure. S–N curves are defined and compared to the fatigue resistance of welded detail categories of the Eurocode 3. The tests showed that the stress ratio, R, has a marginal influence on the fatigue lifetime of the steel/CFRP double shear lap joints. Finally, a fatigue limit corresponding to a stress range in the steel plate equal to 75 MPa was conservatively estimated during the tests. The fatigue limit seems to be insensitive to the stress ratio R.  相似文献   

11.
A methodology for strain-based fatigue reliability analysis   总被引:2,自引:0,他引:2  
A significant scatter of the cyclic stress–strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter.A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg–Osgood relation. The strain–life data are modeled, similarly, by probability-based strain–life curves of Coffin–Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results.  相似文献   

12.
When a component is subjected to variable-amplitude loading, if the fundamental stress–life cycle relationship and an accumulation rule are given, then the fatigue damage or fatigue life of the component can be calculated and/or estimated. In the present paper, random vibration theory is incorporated into the analysis of the above problem. Several formulas are thus derived. Experimental work is then carried out to verify the derived formulas. Comparison is made among the results calculated based on different formulas, different accumulation rules and different random loading. It is concluded that the derived formulas do provide us with quick prediction of the fatigue damage or fatigue life when a component is subjected to variable-amplitude loading that has a certain random nature.  相似文献   

13.
The importance of material fatigue information in design has been well recognized. There are a few existing fatigue life prediction methods based on materials tensile properties. Some of these fatigue life prediction methods can be successfully applied for non-heat affected materials. However, industrial components, such as pressure vessel and pipelines are commonly constructed by welding parts together. The fatigue lives of welded section and its surrounding material could be greatly affected by the welding process. Therefore, it is beneficial to develop a fatigue life prediction model for the weld and surrounding heat affected zone (HAZ) materials based on their tensile testing data. In this paper, fatigue lives of base material and its weld and HAZ materials for constructing coke drums are studied. Mechanical properties are first obtained from the tensile tests. Then, fully-reversed strain-controlled fatigue tests were performed. It is found that the fatigue life of pure base material is roughly twice of the weld and four time of the HAZ at the same strain amplitude. Four-point correlation (FPC) method by Manson can reasonably predict the life of base material. However, it over-predicts the lives of weld and HAZ. By introducing two reduction factors Rplastic and Relastic for the weld and HAZ material respectively into the FPC method, the over-prediction can be rectified. Therefore, the proposed modified FPC method could be applied in predicting fatigue lives of weld and HAZ materials.  相似文献   

14.
A lot of research has been done to improve fatigue strength of materials by creating compressive residual stress field in their surface layers through shot peening. In this paper, fatigue strength of shot peened leaf springs has been calculated from laboratory samples. The axial fatigue strength of EN45A spring steel specimen is evaluated experimentally as a function of shot peening in the conditions used for full-scale leaf springs testing in industries. Optimum shot peening condition for specimen is found and S/N curves of the specimens are correlated with leaf springs curve. A mathematical model has been developed which predicts the fatigue life of leaf springs for a given stress at varying shot peening conditions. Predictions from this model are compared with experimental data. The estimation of fatigue life and relaxation of compressive residual stress field are discussed.  相似文献   

15.
The extensive progress which has been made in the multiaxial fatigue area over the past 5 to 10 years has allowed wider application of the multiaxial fatigue method in component durability design in the ground vehicle industry. The method adopts the long established local strain–life approach and includes several new features. (1) A three-dimensional cyclic stress–strain model, used to simulate the elastic–plastic material behavior under complicated loadings. (2) The critical plane approach, which requires the fatigue analysis to be performed on various potential failure planes before determining the lowest fatigue life. (3) A biaxial damage criterion, to better quantify fatigue damage under various loading conditions. (4) A multiaxial Neuber equivalencing technique, used to estimate, from the elastic finite element stress results, the multiaxial stress and strain history of plastically deformed notch areas. This paper examines the application of the above features to the fatigue analyses of three generic service/test histories: a constant amplitude (baseline) test history, a history directly recorded by strain gages mounted on the critical location of a structural component, and a loading history recorded in multichannels for a complex structure.  相似文献   

16.
A frequency-domain fatigue life estimation algorithm based on Statistical Energy Analysis (SEA) is proposed in this study for a structure subject to high-frequency loading. The main contribution is to observe that, when evaluated at 1/3-octave bands, the RMS value of the power spectral density (PSD) function is sufficiently refined to produce meaningful fatigue life estimates. A practical application concerning the fatigue life of a plate of aircraft subject to high-frequency random loading is presented to confirm the applicability of the proposed algorithm.  相似文献   

17.
A semi-empirical S-N formulation for the modeling of the constant amplitude fatigue behavior of composite materials and structures is introduced in this paper. The new S-N formulation is based on the commonly used exponential and power law fatigue models. It is a hybrid formulation combining the two existing models in order to improve their modeling accuracy in the low and high cycle fatigue regions. This formulation was applied to a number of fatigue databases for different composite materials and structural elements in order to simulate their fatigue behavior. The modeling accuracy of the hybrid model was compared to the accuracy of commonly used S-N models for composite materials. As proved, the hybrid model performs better in the majority of the examined cases and is able to overcome the disadvantages of previously developed models without introducing any complexity in the fitting procedure.  相似文献   

18.
A three-dimensional extended finite element method (X-FEM) coupled with a narrow band fast marching method (FMM) is developed and implemented in the Abaqus finite element package for curvilinear fatigue crack growth and life prediction analysis of metallic structures. Given the level set representation of arbitrary crack geometry, the narrow band FMM provides an efficient way to update the level set values of its evolving crack front. In order to capture the plasticity induced crack closure effect, an element partition and state recovery algorithm for dynamically allocated Gauss points is adopted for efficient integration of historical state variables in the near-tip plastic zone. An element-based penalty approach is also developed to model crack closure and friction. The proposed technique allows arbitrary insertion of initial cracks, independent of a base 3D model, and allows non-self-similar crack growth pattern without conforming to the existing mesh or local remeshing. Several validation examples are presented to demonstrate the extraction of accurate stress intensity factors for both static and growing cracks. Fatigue life prediction of a flawed helicopter lift frame under the ASTERIX spectrum load is presented to demonstrate the analysis procedure and capabilities of the method.  相似文献   

19.
Fatigue reliability prediction of welded structures is mainly based on nominal stress or hot spot stress method, but there are some problems such as grid sensitivity and joint geometry dependence. The Master S-N curve method can solve these problems well, but the corresponding reliability model needs to be studied. In this paper, the fatigue reliability model of welded structures based on the Master S-N curve method is studied. Considering the randomness of life and the correlation of failure, a reliability model is proposed, which reduces the computational burden by establishing a median damage-random threshold rule. Taking the welded drive axle housing as an object, the system reliability is analyzed under the bench test condition, and verified by the experimental data. After the verification, this method is used to predict the reliability of the axle housing under variable amplitude loading collected in the test field, and the results are verified by Monte Carlo (MC) method. When the P-S-N curves are parallel, the model is accurate, which is the characteristic of the Master S-N curve method. This method only needs to input the median damage value of the weak part, which is easy to be applied. This method can speed up the reliability prediction cycle of welded structures, which is beneficial to product innovation and optimal design. Finally, an improved design scheme is proposed for the weak parts of welding, and the effects of welding leg width, welding depth, and closed weld on fatigue life are revealed.  相似文献   

20.
ZrO2 gate dielectric thin films were deposited by radio frequency (rf)-magnetron sputtering, and its structure, surface morphology and electrical properties were studied. As the oxygen flow rate increases, the surface becomes smoother. The experimental results indicate that a high temperature annealing is desirable since it improves the electrical properties of the ZrO2 gate dielectric thin films by decreasing the number of interfacial traps at the ZrO2/Si interface. The carrier transport mechanism is dominated by the thermionic emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号