首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CVD金属石膜刀具的制造技术及其应用   总被引:1,自引:0,他引:1  
主要论述了CVD金刚石厚膜刀具制造过程中的几个关键工艺,包括切割、焊接、抛光和刃磨等,介绍了CVD金刚石膜刀具加工复合材料的实验研究。  相似文献   

2.
周天剑  杜文浩  雷大江 《机械》2006,33(12):25-27
单晶金刚石刀具在刃磨过程中,不同晶面,晶向以及工艺参数会对发出的噪声和振动信号有所影响。分析刃磨工艺条件、噪声和振动信号以及刃口质量之间的相互关系,将有助于更加深入地了解刀具刃磨技术,提高刀具制造水平。  相似文献   

3.
This paper presents auto-tracking single point diamond cutting, which can conduct precision cutting on non-planar brittle material substrates without prior knowledge of their surface forms, by utilizing a force controlled fast tool servo (FTS). Differing from traditional force feedback control machining based on a cantilever mechanism such as an atomic force microscope (AFM) that suffers from low-rigidity and limited machining area, the force controlled FTS utilizes a highly-rigid piezoelectric-type force sensor integrated with a tool holder of the FTS system to provide sufficient stiffness and robustness for force-controlled cutting of brittle materials. It is also possible for the system to be integrated with machine tools to deal with the difficulties in the cutting of large area non-planar brittle materials, which requires not only high machining efficiency but also a high stiffness. Experimental setup is developed by integrating the force controlled FTS to a four-axis ultra-precision diamond turning machine. For the verification of the feasibility and effectiveness of the proposed cutting strategy and system, auto-tracking diamond cutting of micro-grooves is conducted on an inclined silicon substrate and a convex BK7 glass lens, while realizing constant depths of cuts under controlled thrust forces.  相似文献   

4.
为满足航空发动机的减重、提高零部件的加工质量和对性能的要求,采用试验的方法,对航空用钛合金薄壁件进行精密切削加工研究,主要以表面加工质量为研究对象,并以其为约束,以提高效率为目的对切削参数进行优化,得到了较为可行的加工参数,并对表面粗糙度的变化规律进行分析研究,同时分析了金刚石刀具在精密切削钛合金薄壁件加工中,刀具磨损初期、中期和后期的磨损形式和成因,研究为实际型号钛合金薄壁零件的加工提供了一种改进加工工艺技术的方法。  相似文献   

5.
Elliptical vibration cutting with single-crystalline diamond tools is applied to mirror surface machining of high-alloy steels such as cold work die steels and high-speed tool steels with a hardness of more than 60 HRC. Although practical mirror surface machining of hardened die steels such as Stavax (modified AISI 420) with a hardness of 53 HRC has been realized with the elliptical vibration cutting, lives of single-crystalline diamond tools are not sufficiently long in machining of some high-alloy steels, that may be caused by a large amount of alloy elements. In order to clarify the influence of the alloy elements on the diamond tool damage, the elliptical vibration cutting experiments are conducted on six kinds of high-alloy steels and four kinds of pure metals which are the same as the alloy elements. Mechanical properties of the alloy steels, i.e. difference in hardness between carbides and matrices, and the number of small carbides, are measured, and their influence on the micro-chippings are investigated. The chemical states of the alloy elements in high-alloy steels are analyzed using an X-ray diffraction (XRD) and an electron probe micro analyzer (EPMA), and their influence on the tool wear is discussed. Based on the investigation, a mirror surface machining of DC53, which has a high hardness of 62.2 HRC and the best machinability in the tested high-alloy steels, is demonstrated, and a mirror surface with a roughness of Rt 0.05 μm is obtained successfully.  相似文献   

6.
A method, which is referred to as the edge reversal method, is proposed for precision measurement of the cutting edge radius of single point diamond tools. An indentation mark of the cutting edge which replicates the cutting edge geometry is firstly made on a soft metal substrate surface. The cutting edge of the diamond tool and its indentation mark, which is regarded as the reversal cutting edge, are then measured by utilizing an atomic force microscopy (AFM), respectively. The cutting edge radius can be accurately evaluated through removing the influence of the AFM probe tip radius, which is comparable to the cutting edge radius, based on the two measured data without characterization of the AFM probe tip radius. The results of measurement experiments and uncertainty analysis are presented to demonstrate the feasibility of the proposed method.  相似文献   

7.
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.  相似文献   

8.
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-μm accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-μm precision. The tool holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-μm accuracy, and it has significantly reduced the time required to set a tool.  相似文献   

9.
Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is still blank. In view of this, cutting test and fatigue crack growth test of YT05 cemented carbide cutting tool are conducted to measure such data as the original crack size, growth size, times of impact loading, number and time of cutting tool in failure, and stress distribution of cutting tool is also obtained by simulating cutting process of tools. Mathematical models on dynamic reliability and dynamic reliability sensitivity of cutting tool are derived respectively by taking machining time and times of impact loading into account, thus change rules of dynamic reliability sensitivity to physical and material parameters can be obtained. Theoretical and experimental results show that sensitive degree on each parameter of tools increases gradually with the increase of machining time and times of impact loading, especially for parameters such as fracture toughness, shape parameter, and cutting stress. This proposed model solves such problems as how to determine the most sensitive parameter and influence degree of physical parameters and material parameters to reliability, which is sensitivity, and can provide theoretical foundation for improving reliability of cutting tool system.  相似文献   

10.
Cutting force measurement is important for monitoring the diamond cutting process. In this paper, a new measurement method of thrust cutting force associated with a voice coil motor (VCM) driven fast tool servo (FTS) system has been developed. Instead of integrating additional force sensors to the FTS which would influence the dynamics of the FTS, the force measurement in the proposed system is achieved associated with in-process monitoring the variation of the driving current of the VCM and pre-process determining the system parameters. In this way, the cutting forces are accurately obtained by subtracting the influences of the driving force, the spring force, the damping force and the inertial force associated with the system as well as the cutting process. Based on the proposed method, a microstructure array was machined using the developed VCM-FTS and the cutting force during the machining process was monitored in real time. The measured force signal was in good agreement with the machining result. The surface profile error of the fabricated microstructure could be clearly distinguished by the variation of the measured cutting force signal. This provides a new approach for in-process cutting force measurement associated with FTS based diamond cutting process.  相似文献   

11.
超硬刀具材料有立方氮化硼和金刚石。金刚石的种类很多。本文对立方氮化硼和金刚石作了全面介绍,包括发展过程、种类、性能、制造方法和应用范围。近年,又发明了一种最新的超硬刀具材料氯化碳——CxNy,对CxNy也进行了介绍。本文还列出了部分试验数据和试验曲线。  相似文献   

12.
To understand the effects of cutting velocity, tool elastic deformation generated by high normal stresses during metal cutting processing and artificial tool flank wear on the cutting process, an iterative mathematical model for calculating the tool–workpiece contact problem was developed in this paper under the assumption of elastic cutting tools. In this model, the finite element method is used to simulate cutting of mild steel by the P20 cutting tool with constant artifical tool flank wear under the condition of three different cutting velocities. The results obtained in the simulation were found to match the experimental data reported by related studies. The simulation results also indicate that the thrust and the cutting forces are functions of cutting velocity. Besides, both the normal stress on the tool rake face and the residual stress of machined workpiece generally decrease with increase in cutting velocity. According to the findings in this study, though the residual stress of the machined workpiece decreases as the cutting velocity increases, its value is still higher than that in ordinary conditions due both to the influence of tool flank wear and tool elastic deformation. Also, the phenomenon of curvature at the workpiece end easily occurs.  相似文献   

13.
Functional micro/nano structures are promising for enhancing the performance of CaF2-based devices. However, it is still a challenge to precisely manufacture CaF2 micro/nano structures due to their brittleness. In the present work, we demonstrated the machinability of ductile-mode diamond cutting of CaF2 and the ability to sculpture sophisticated micro/nano structures on CaF2 by applying elliptical vibration cutting. Firstly, the nanoindentation of CaF2 reveals the crystal orientation-dependent interaction between dislocation slip and crack propagation, thus obtaining the optimal crystal orientation for plasticity. Subsequently, the grooving tests were conducted along the crystal orientation of (111)[121]. With elliptical vibration cutting, the critical depth of cut from ductile-to-brittle transition is increased by 42 times as compared with ordinary cutting. Furthermore, considering the instantaneous uncut chip thickness in each vibration cycle, the influence of vibration amplitude on the ductile machinability of CaF2 is discussed in detail. Finally, based on these fundamental results, ultra-precision hexagonal microlenses were successfully sculptured on CaF2 by applying the amplitude-controlled sculpturing method in elliptical vibration cutting.  相似文献   

14.
蓝宝石衬底片精密加工工艺研究   总被引:9,自引:0,他引:9  
通过对蓝宝石衬底片精密加工的设备、工具、辅料、清洗等方面的研究,优化了衬底片加工工艺,提高了衬底片加工质量,且降低了加工成本.  相似文献   

15.
基于切削声音的刀具磨损状态识别研究   总被引:1,自引:0,他引:1  
人工神经网络可以实现多特征信息的融合,将基于BP神经网络,建立各频率段能量百分比与刀具磨损的映射关系,进行刀具磨损状态识别的研究。最后在Labview环境下调用Matlab神经网络程序,初步实现了刀具磨损的识别。  相似文献   

16.
Electrical discharge machining (EDM) is developing as a new alternative method for slicing single crystal silicon carbide (SiC) ingots into thin wafers. Aiming to improve the performance of EDM slicing of SiC wafers, the fundamental characteristics of EDM of SiC single crystal were experimentally investigated in this paper and compared to those of steel. Furthermore, EDM cutting of SiC ingot by utilizing copper foil electrodes was proposed and its performance was investigated. It is found that the EDM characteristics of SiC are very different from those of steel. The EDM machining rate of SiC is higher and the tool wear ratio is lower compared to those of steel, despite SiC having a higher thermal conductivity and melting point. Thermal cracks caused by the thermal shock of electrical discharges and the Joule heating effect due to the higher electrical resistivity are considered to be the main reasons for the higher material removal rate of SiC. It is concluded that the new EDM cutting method utilizing a foil electrode instead of a wire electrode has potential for slicing SiC wafers in the future.  相似文献   

17.
Accurate determination of forces in the three-dimensional turning process is important for the development of a model to describe diamond turning (DT). This paper describes a dynamometer system which measures force magnitude in steady-state cutting. To build a quantitative model, the forces are experimentally separated into components. The response of these components to a variation of cutting parameters is explained in part by a hardness gradient near the part surface. This gradient is due to work hardening by the tool during previous passes. The extent of plastic work, and thus the hardness gradient, is dependent on the tool edge sharpness (≈ 100 nm). Therefore, the turning forces are strongly influenced by the condition of the tool edge. This paper illustrates the feasibility of finding the connection between edge sharpness and tool forces. It also demonstrates the ability to monitor tool forces over extended periods of time. These relationships are important in predicting the diamond tool edge condition from tool forces during a turning operation.  相似文献   

18.
介绍了涂层高速钢刀具的切削性能,并列出了涂层与未涂层高速钢刀具的对比切削数据。  相似文献   

19.
A technique is described to measure the edge radius of diamond cutting tools using the scanning electron microscope (SEM). This method attempts to overcome two major limitations of the SEM in this application: low image contrast and lack of quantitative topographic information. A line of electron beam contamination, viewed at an angle, provides improved contrast for focusing and a means of obtaining the tool profile from the geometry.  相似文献   

20.
The paper describes a method of determining the temperature field under real conditions of the cutting of natural diamond monocrystals using a thermograph. The advantages of the thermography over the method of artificial thermocouples are discussed. The temperature distribution along the cutting direction is given and temperature kinetic dependencies are explained. It is shown that under severe cutting conditions the crystal temperature can reach values close to the diamond graphitization temperature. In those cases single large wear particles of diamond appear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号