首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The microstructural evolution during age hardening of a Cu-bearing Al-Mg-Si alloy has been investigated by the three-dimensional atom probe (3DAP) and transmission electron microscope (TEM) techniques, in order to clarify the effect of Cu on the initial age-hardening response. After 30 minutes of artificial aging at 175 °C, the alloy shows a significant increase in hardness. The TEM observations have revealed that very fine, needle-shaped β″ precipitates are formed in addition to spherical Guinier-Preston (GP) zones, whereas only the spherical GP zones are observed in the Al-Mg-Si ternary alloy using the same aging condition. The number density of the precipitates is significantly affected by the preaging conditions. The 3DAP analysis shows that the distribution of Cu atoms is uniform after 30 minutes of artificial aging at 175 °C, whereas Cu atoms are incorporated into the needle-shaped β″ precipitates after 10 hours of aging at 175 °C. Based on these microanalytical results, the effect of Cu additions on the age-hardening response of Al-Mg-Si alloys is discussed.  相似文献   

2.
In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase (σ ? σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ–ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as (σ ? σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.  相似文献   

3.
The object of the paper is to examine the effects of alloy purity and state of aging on the fracture mechanism and resultant toughness of pure Al-Cu alloys, and commercial duralumin. In pure alloys, the transition from a shear to an intergranular mode of fracture with overaging is associated with changes in the nature and size of the matrix precipitate, which affect the slip character. In the corresponding commercial purity alloys, no such fracture mode transition occurs. The presence of second-phase dispersoids inhibits planar slip, and in the overaged state inclusion-matrix interfaces present a suitable alternative site to the grain boundaries for strain accumulation, resulting in debonding leading to the initiation of voids, which subsequently grow and coalesce. The fracture toughness, as conventionally measured, indicates the material’s resistance to crack initiation rather than propagation and is effectively independent of fracture mode. The work hardening capacity has a marked effect on void size, and is shown to be a sensitive indicator of fracture toughness in both pure and commercial alloys. Based on a simple model, good agreement is obtained between experimental results of toughness and those predicted from a knowledge of the tensile properties.  相似文献   

4.
A physically based model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu (7xxx series) alloys is presented. The model includes calculations of the η- and the S-phase solvus (using a regular-solution model), taking account of the capillary effect and η coarsening. It takes account of the conductivity of grains (incorporating dissolved alloying elements, undissolved particles, and precipitates) and solute-depleted areas at the grain boundaries. Data from optical microscopy, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM) are consistent with the model and its predictions. The model has been successfully used to fit and predict the conductivity data of a set of 7xxx alloys including both Zr-containing alloys and Cr-containing alloys under various aging conditions, achieving an accuracy of about 1 pct in predicting unseen conductivity data from this set of alloys.  相似文献   

5.
通过拉伸性能测试、晶间腐蚀(IGC)、剥落腐蚀(EXCO)实验、极化曲线测试及透射电镜(TEM)分析,研究Zn元素和不同热处理制度对2056铝合金室温常规力学性能、抗晶间腐蚀性能、抗剥落腐蚀性能及微观组织的影响。结果表明,微量Zn均匀存在于合金的各个位置,可促进S′相的析出和提高合金强度;减小晶内与晶界的电化学腐蚀动力,使晶界析出的S相数量减少并不连续分布,无沉淀析出带(PFZ)变窄,提高合金的抗晶间腐蚀性能和抗剥蚀性能。与T6处理态相比,经T8处理后,晶内析出的S′相数量增加、尺寸减小、分布均匀,合金的强度显著提高,塑性降低;同时,沿晶界析出的S相数量减少,PFZ变窄,合金的抗晶间腐蚀和抗剥落腐蚀能力提高。在3.5%的NaCl溶液中进行的极化曲线测试也表现出相同的结果。  相似文献   

6.
To study how changes in solute elements affect precipitation, six Al-Mg-Si alloys aged at 175 °C were investigated by transmission electron microscopy (TEM). In alloys with 1.3 at. pct solute, when the Si/Mg ratio exceeds 5/6, a sharp hardness peak appears after 3 hours that correlates with a high density of fine Guinier-Preston (GP) zones. A second, broader peak correlates with β″ precipitates and U phases. With high Si/Mg ratios, GP zones survive for long aging times. The β″-Mg5Si6 phase becomes very stable in the alloy with its Si/Mg ratio closest to 6/5. Deviation from this ratio increases fractions of β′, U-phases and disordered precipitates. In Mg-rich alloys less GP zones form and the first peak is suppressed. A coarse precipitate microstructure of β″ and β′ develops, the volume fraction being much higher than in Si-rich alloys. The Mg-rich alloys overage faster. Reducing the content of solutes causes alloys with high Si/Mg ratios to have a more Mg-rich behavior.  相似文献   

7.
The effect of grain boundary (GB) precipitates on the GB strength of an age-hardened Fe-7.8Mn-8.2Ni alloy was investigated. Premature intergranular fracture was observed after age hardening due to the precipitation of ??-MnNi precipitates at prior austenite grain boundaries. However, the conversion of GB ?? precipitates to austenite by a short second aging at 793?K (520?°C) after peak aging at 713?K (440?°C) resulted in a remarkable improvement of GB strength. The result strongly supports the proposition that the weak bonding of GB ?? precipitates to the matrix is the main reason for GB embrittlement in age-hardened Fe-Mn-Ni alloys.  相似文献   

8.
Two ternary TiAl-based alloys with chemical compositions of Ti-46.4 at. pct Al-1.4 at. pct Si (Si poor) and Ti-45 at. pct Al-2.7 at. pct Si (Si rich), which were prepared by reaction powder processing, have been investigated. Both alloys consist of the intermetallic compounds y-TiAl, α2-Ti3Al, and ξ-Ti5(Si, Al)3. The microstructure can be described as a duplex structure(i.e., lamellar γ/α2 regions distributed in γ matrix) containing ξ precipitates. The higher Si content leads to a larger amount of ξ precipitates and a finer y grain size in the Si-rich alloy. The tensile properties of both alloys depend on test temperature. At room temperature and 700 °C, the tensile properties of the Si-poor alloy are better than those of the Si-rich alloy. At 900 °C, the opposite is true. Examinations of tensile deformed specimens reveal ξ-Ti5(Si, Al)3 particle debonding and particle cracking at lower test temperatures. At 900 °C, nucleation of voids and microcracks along lamellar grain boundaries and evidence for recovery and dynamic recrystallization were observed. Due to these processes, the alloys can tolerate ξ-Ti5(Si, Al)3 particles at high temperature, where the positive effect of grain refinement on both strength and ductility can be utilized.  相似文献   

9.
In order to better understand the formation of Precipitate Free Zones (PFZ), microanalysis was conducted on heat treated Al-2.2 at. pct Zn-4.7 at. pct Mg and Cu-30 at. pct Ni-0.9 at. pct Nb alloys. In both the alloys, no appreciable solute depletion at the grain boundaries was observed in the as-quenched condition. After aging, marked solute depletion was observed in the PFZ of both the alloys. In the Al-Zn-Mg alloy, the PFZ were supersaturated with respect toη andT phases up to 4 h of aging at 473 K. In the Cu-Ni-Nb alloy, the PFZ were supersaturated only with respect to theβ phase but not the metastable γ″ phase. Based on the results, the factors affecting the formation and growth of PFZ are discussed.  相似文献   

10.
In-situ transmission electron microscopy (TEM) tensile tests on as-cast and aged 63Sn37Pb solder alloys were conducted, and the fracture behavior in nanometer scale ahead of the crack tip was inspected and discussed. Results show that the fracture was completed by connecting the discontinuous cracks or voids. Dislocation behavior was concentrated along the grain boundaries for as-cast samples, and displayed mainly as dislocation climb. The crack was intergranular dominated under the lower strain rate. While remarkable mutual dislocation emission was detected in the aged solder. Transgranular cracks were dominant in the fractured area, and they propagated by linking up with the nanometer scale cracks ahead of the crack tips under the effective promotion of the inverse dislocation emission. At the same time, the partial interphase or intergranular cracks in the thinned area were also found. Under this condition, a new critical stress intensity factor KC to define the mutual dislocation emission was proposed.  相似文献   

11.
The role of severe plastic deformation on the second-phase stability in a 6082 Al-Mg-Si alloy was studied using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) techniques. The alloy was fully annealed prior to undergoing up to six equal channel angular pressing (ECAP) passes using route C. The Orowan strengthening mechanism was calculated on the basis of TEM inspections for the two hardening second-phase precipitates: Mg2Si and Si. The former had a major tendency to be cut and fragmented by dislocations, while in the latter, a dissolution process was induced by severe plastic deformation. Accordingly, the second-phase Si particles became progressively less effective with increasing deformation (i.e., additional ECAP passes). The increase in hardness with the ECAP passes was mostly due to the grain refining mechanism and to dislocation tangles within the newly formed grains. The expected, though if limited, contribution of second-phase hardening was prevalently accounted for by the Mg2Si particles.  相似文献   

12.
The microstructure and tensile behavior of an Al-3Cu-l.6Li-0.8Mg-0.2Zr alloy, produced by splatquenched powder metallurgy processing, were studied. The alloy exhibited homogeneous deformation, both in bulk samples and duringin situ TEM studies. This is in contrast to the strain localization that is frequently observed in Mg-free Al-Cu-Li-X alloys. The difference in deformation mode is attributed to a fine distribution of Ś (Al2CuMg) which precipitates up to the grain boundaries. A processing treatment involving 2 pct stretch prior to aging resulted in a yield strength of 555 MPa, a reduction in area of 29 pct, and a strain to fracture of 8.8 pct. This represents an attractive improvement in specific properties compared with 7075-T76 having a similar texture.  相似文献   

13.
Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys   总被引:2,自引:0,他引:2  
The tensile properties of Cu-9Ni-6Sn alloys with different swaging amounts of 64, 77, and 95 pct, either solutionized and aged (S/A) or directly aged (D/A), were examined as a function of aging time. It was found that the aging response of Cu-9Ni-6Sn alloys varied greatly depending on the prior solution heat treatment before aging and/or different swaging amounts. The swaged S/A Cu-9Ni-6Sn alloys showed a multistage increase in tensile strength with respect to aging time, probably due to the sequential occurrence of spinodal decomposition, formation of metastable γ· precipitates, and recrystallization. The effect of different swaging amounts, ranging from 64 to 95 pct, was minimal on the aging response of S/A specimens. The prior cold working, however, appeared to favor the spinodal strengthening, comparing unswaged and swaged S/A Cu-9Ni-6Sn alloys. In 95 pct swaged D/A Cu-9Ni-6Sn alloys, the level of hardening was much less sensitive to aging time. A complex interaction between the reduction in dislocation density, the formation of equilibrium precipitates, and the reduction of Sn content in the Sn-rich segregates during an aging process is believed to be responsible for such a lean sensitivity. The increases in tensile strength of 64 and 77 pct swaged D/A Cu-9Ni-6Sn alloys were found to be much steeper than that in the 95 pct counterparts in the early and intermediate stages of aging, which is believed to be related to the relative contribution from work hardening and precipitation hardening to the strength level of D/A specimens.  相似文献   

14.
《Acta Metallurgica》1987,35(2):473-482
The growth kinetics of δ′ (Al3Li) precipitate free zones (PFZ) at the grain boundaries has been investigated in several Al-Li alloys at selected aging temperatures ranging from 168 to 225°C and aging times. The PFZs form by a solute depletion mechanism and the PFZ growth can be described as a diffusion controlled process. The activation energy for PFZ growth has been evaluated as 144 kj/mol, which agrees with the activation energy evaluated for the diffusion of Li in α-Al. The PFZ growth has been analyzed on the basis of a diffusion model with due consideration of δ (AlLi) formation at the grain boundaries. With increase in Li content in the alloys, the growth rate of PFZ increases. This observation is explained by a possible increase in the interdiffusion coefficient with the alloy composition. The effect of grain morphology on the PFZs has been studied by comparing the PFZs in recrystallized and unrecrystallized Al-Li alloys.  相似文献   

15.
16.
For the Alloy 617, the effect of aging on the fracture energy degradation has been investigated after aging for different time periods at 1023 K (750 °C). A sharp reduction in impact energy (by ~55 pct vis-à-vis the as-received material) after 1000 hours of aging, as evaluated from room-temperature Charpy impact tests, has been observed. Further aging up to 10,000 hours has led to a degradation of fracture energy up to ~78 pct. Fractographic examinations using scanning electron microscopy (SEM) have revealed a change in fracture mode from fibrous-ductile for the un-aged material to intergranular mode for the aged one. The extent of intergranular fracture increases with the increasing aging time, indicating a tendency of the material to undergo grain boundary embrittlement over long-term aging. Analysis of the transmission electron microscopy (TEM) micrographs along with selected area diffraction (SAD) patterns for the samples aged at 10,000 hours revealed finely dispersed γ′ precipitates of size 30 to 40 nm, rich in Al and Ti, along with extensive precipitation of M23C6 at the grain boundaries. In addition, the presence of Ni3Si of size in the range of 110 to 120 nm also has been noticed. The extensive precipitation of M23C6 at the grain boundaries have been considered as a major reason for aging-induced embrittlement of this material.  相似文献   

17.
in-situ transmission electron microscopy (TEM) tensile tests on as-cast and aged 63Sn37Pb solder alloys were conducted, and the fracture behavior in nanometer scale ahead of the crack tip was inspected and discussed. Results show that the fracture was completed by connecting the discontinuous cracks or voids. Dislocation behavior was concentrated along the grain boundaries for as-cast samples, and displayed mainly as dislocation climb. The crack was intergranular dominated under the lower strain rate. While remarkable mutual dislocation emission was detected in the aged solder. Transgranular cracks were dominant in the fractured area, and they propagated by linking up with the nanometer scale cracks ahead of the crack tips under the effective promotion of the inverse dislocation emission. At the same time, the partial interphase or intergranular cracks in the thinned area were also found. Under this condition, a new critical stress intensity factorK c to define the mutual dislocation emission was proposed.  相似文献   

18.
The hardness response, tensile behavior, and phase transformations occurring in a quenched and aged metastable β phase Ti-30 at. pct V-l at. pct Si alloy have been inves-tigated. Upon aging at 570°C, as-quenched samples show a broad hardness peak which is associated with the formation of rod-like, hexagonal (Ti,V)xSiy transition phase precipi-tates. The equilibrium silicide is observed upon aging at 570°C in the form of faceted, tetragonal particles. A loss of tensile ductility and a transition to intergranular fracture occurs after extended aging at 570°C and is related to Si segregation to the grain bound-aries. Comparing the behavior of Ti-30V to that of Ti-30V-lSi shows that the presence of Si strongly retards α-phase formation. However, a substantial age hardening re-sponse still occurs upon aging at 450°C, especially after prior cold work (the yield strength increases from 635 to 982 MPa). This hardening response is combined with a retention of a ductile, transgranular fracture even after extended aging at 450°C. Aging first at 570°C followed by aging at 450°C results in an increase in the volume fraction of α-phase formed but a subsequent decrease in ductility and hardness response upon aging at 450°C. These results are discussed in terms of the structure/property relationships which result from the influence of Si on the formation of, a) (Ti.V)xSiy precipitates, b) the equilibrium silicide, and c) the α-phase.  相似文献   

19.
in-situ transmission electron microscopy (TEM) tensile tests on as-cast and aged 63Sn37Pb solder alloys were conducted, and the fracture behavior in nanometer scale ahead of the crack tip was inspected and discussed. Results show that the fracture was completed by connecting the discontinuous cracks or voids. Dislocation behavior was concentrated along the grain boundaries for as-cast samples, and displayed mainly as dislocation climb. The crack was intergranular dominated under the lower strain rate. While remarkable mutual dislocation emission was detected in the aged solder. Transgranular cracks were dominant in the fractured area, and they propagated by linking up with the nanometer scale cracks ahead of the crack tips under the effective promotion of the inverse dislocation emission. At the same time, the partial interphase or intergranular cracks in the thinned area were also found. Under this condition, a new critical stress intensity factor K c to define the mutual dislocation emission was proposed.  相似文献   

20.
The aluminum (Al) alloys 6063-T5 and T4 were friction-stir welded at different tool rotation speeds (R), and then distributions of the microstructure and hardness were examined in these welds. The maximum temperature of the welding thermal cycle rose with increasing R values. The recrystallized grain size of the weld increased exponentially with increasing maximum temperature. The relationship between the grain size and the maximum temperature satisfied the static grain-growth equation. In the as-welded condition, 6063-T5 Al was softened around the weld center, whereas 6063-T4 Al showed homogeneous hardness profiles. Different R values did not result in significant differences in the hardness profile in these welds, except for the width of the softened region in the weld of 6063-T5 Al. Postweld aging raised the hardness in most parts of the welds, but the increase in hardness was small in the stir zone produced at the lower R values. Transmission electron microscope (TEM) observations detected a similar distribution of the strengthening precipitates in the grain interiors and the presence of a precipitation-free zone (PFZ) adjacent to the grain boundaries in all the welds. Microstructural analyses suggested that the small increase in hardness in the stir zone produced at the lower R values was caused by an increase in the volume fraction of PFZs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号