首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
主要综述了近年来国内在车用改性聚丙烯材料方面的研究进展,重点介绍了高抗冲共聚聚丙烯、无机纤维和粒子增强聚丙烯、弹性体增韧聚丙烯以及低VOC聚丙烯和阻燃聚丙烯材料的制备方法和性能。  相似文献   

2.
《广东化工》2021,48(2)
本文通过综述近年来关于无机粒子阻燃剂改性的相关文献,分析了无机粒子阻燃剂表面改性的方法,并重点阐述了表面活性剂法、表面接枝法、机械力化学法、沉淀法等对无机粒子表面改性及其在聚合物阻燃领域的应用。最后,对未来无机粒子基阻燃高分子材料的发展方向和研究趋势进行了展望。  相似文献   

3.
综述了近年来国内外聚丙烯(PP)阻燃改性技术的研究进展,包括无机阻燃剂、有机阻燃剂、复合阻燃剂对PP的阻燃效果和研究现状,并展望了今后PP阻燃改性技术的发展趋势。  相似文献   

4.
无机纳米粒子改性硬聚氨酯泡沫塑料的研究进展   总被引:1,自引:0,他引:1  
介绍了无机纳米粒子改性硬聚氨酯泡沫塑料常用的两种方法和纳米粒子对改性纳米复合材料的力学性能、阻燃性能、导电性能等影响的研究,提出了无机纳米粒子改性硬聚氨酯泡沫塑料存在的问题和未来的研究方向。  相似文献   

5.
无机纳米粒子增韧聚丙烯及其机理研究   总被引:4,自引:0,他引:4  
综述了无机纳米粒子增韧聚丙烯的最新研究进展,阐述了不同纳米粒子对聚丙烯增韧效果的影响,介绍了无机纳米粒子的物理化学作用增韧机理和微裂纹化增韧机理。并对增韧改性聚丙烯的发展前景进行展望。  相似文献   

6.
高性能无机填料在PP改性中的应用   总被引:12,自引:0,他引:12  
讨论了无机填料微细化和表面活化以及无机粒子对聚丙烯增韧增强机理,介绍了无机填料对聚丙烯的改性效果与应用。  相似文献   

7.
我国聚丙烯增韧改性研究进展   总被引:3,自引:0,他引:3  
综述了目前广泛采用的聚丙烯增韧改性方法,包括共聚,接枝,交联,茂金属作聚合催化剂与共混改性,无机刚性粒子改性,成核改性等。介绍了几种增韧方法的增韧机理,并比较各方法优缺点。提出茂金属聚丙烯,纳米无机粒子增韧和β晶型成核剂改性是今后聚丙烯增韧改性的发展重点。  相似文献   

8.
综述了近年来纳米无机阻燃剂及其复合阻燃体系对聚丙烯的阻燃性能研究进展。重点介绍了氢氧化铝、氢氧化镁和蒙脱土及其复合卤系、磷系、膨胀型阻燃剂对阻燃聚丙烯材料的阻燃性能及力学性能的影响。并指出纳米复合改性阻燃聚丙烯不仅能提高阻燃性能,还具有增强、增韧作用,是实现阻燃聚丙烯高性能化及低成本的一个重要方向。  相似文献   

9.
陈慧敏  陈德良  张锐 《中国塑料》2008,22(10):13-19
综述了近年来微-纳米无机刚性粒子填充改性聚丙烯(PP)材料的最新进展,介绍了微米级、纳米级和微-纳米组合无机刚性粒子的添加对PP复合材料性能的影响。无机刚性粒子越细,越有利于PP材料的增强增韧;无机刚性粒子的表面改性处理对复合材料的微观结构和性能有重要影响。微米无机刚性粒子可提高PP材料的抗冲击强度与刚性,但强度会有所降低;均匀分散的无机纳米粒子同时起到增强增韧的双重作用;具有粒径级的组合粒子的填充改性优于单一无机粒子。  相似文献   

10.
程海涛  申献双 《中国塑料》2019,33(7):130-140
综述了1992—2018年不饱和聚酯树脂(UPR)阻燃技术的发展情况,主要对各种纳米无机粒子、无机粒子、纤维及其改性化合物、原位聚合等添加型UPR阻燃剂和含Si、N、P元素反应单体反应型UPR阻燃剂。并对阻燃机理、阻燃效果进行了阐述,对UPR阻燃性能研究的发展趋势与方向提出了建议,进行了展望。  相似文献   

11.
曹卫国  姜建华  朱源泰  倪锦平  柴钢 《化学世界》2012,53(10):601-605,628
为了提高聚丙烯材料的降噪性能,设计通过无机粒子填充、发泡和弹性体填充的方法对聚丙烯进行改性,研制具有一定降噪效果的聚丙烯材料。实验表明,当BaSO4填充量为40%时,材料具有最佳的降噪效果,其隔声量为32.1db,比改性前聚丙烯材料的隔声量提高了72.6%。同时材料的力学性能和热学性能均优于改性前聚丙烯材料。  相似文献   

12.
含淀粉膨胀阻燃剂对聚丙烯的性能影响研究   总被引:3,自引:0,他引:3  
采用淀粉与磷酸三聚氰胺复配成膨胀型阻燃剂,制备了膨胀阻燃聚丙烯(PP),利用热重分析法(TG)与差示扫描量热法(DSC)比较了纯PP和阻燃PP的热稳定性及成炭性,研究了阻燃剂对PP阻燃性能和力学性能的影响。结果表明,当阻燃剂用量为35份时,阻燃PP的拉伸强度为17.1 MPa,断裂伸长率为23.5%,弯曲弹性模量为1.62 GPa,弯曲强度为36.36 MPa,氧指数达到26%。  相似文献   

13.
无机填料可以提高聚丙烯的刚性、硬度、抗化学性、尺寸稳定性和气体阻隔性,同时减少聚合物的用量,降低产品成本。滑石粉和碳酸钙是聚丙烯复合材料中大量使用的两种填料。主要研究β成核剂和无机填料对聚丙烯成核效应的协同作用,考察经β成核剂FB-1分别与无机填料滑石粉和碳酸钙共同改性的聚丙烯力学性能。  相似文献   

14.
丙烯酸改性卤锑阻燃聚丙烯的结晶性能   总被引:3,自引:0,他引:3  
研究了丙烯酸(AA)改性Sb2O3,聚丙烯(PP)母料制备的不同用量卤锑阻燃PP。阻燃PP的差示扫描量热法结果表明,阻燃剂在PP中存在明显的异相成核作用,使PP结晶温度提高,Sb2O3对PP的异相成核作用比十溴二苯醚明显。在无引发剂过氧化二异丙苯(DCP)存在下,AA对阻燃PP中PP结晶温度的影响取决于阻燃剂的用量;在DCP存在下,PP的结晶温度不随AA用量增加而改变。DCP用量增加导致PP严重降解,结晶温度与熔融温度降低。  相似文献   

15.
纳米CaCO3改性聚合物基复合材料研究进展   总被引:1,自引:0,他引:1  
纳米碳酸钙是一种原料丰富、性能优良的无机填料,在聚合物填充改性方面,纳米碳酸钙填充聚合物基复合材料具有一些普通填充体系无法达到的优良性能。本文综述了纳米碳酸钙在聚甲基丙烯酸甲酯、聚氯乙烯和聚丙烯等材料中的改性研究进展,并对纳米填充粒子和聚合物基体的相容性及增强增韧机理进行了讨论。  相似文献   

16.
以预先合成的密胺甲醛树脂预聚物为壳,通过原位聚合法制备了微胶囊红磷,采用扫描电镜观察到微胶囊红磷颗粒表面包覆一层网状的壳材料。研究了红磷和微胶囊红磷阻燃环氧树脂(EP)的耐热性能、阻燃性能及力学性能。结果表明,微胶囊红磷阻燃EP的耐热性和质量保持率明显提高,添加质量分数10%的微胶囊红磷的阻燃EP的阻燃性能达到UL 94 V–0级,其阻燃性能优于红磷阻燃EP。微胶囊红磷阻燃EP的拉伸强度为30.3 MPa,冲击强度为11.4 kJ/m2,分别比相同用量红磷阻燃EP提高了6.0%和21.3%,其冲击强度比纯EP提高了17.5%,表明微胶囊红磷与基体树脂间的相容性大大改善,可显著提高材料的韧性。  相似文献   

17.
综述了近几年国内外无机填料改性聚丙烯复合材料流变学行为的研究进展,为无机填料改性聚丙烯复合材料流变学研究提供了参考;并展望了流变学研究在无机改性聚丙烯复合材料中的应用前景。  相似文献   

18.
In this paper, zinc phytate was prepared and used as a synergist in intumescent flame-retarded polypropylene composites. The results showed that the polypropylene composites with 17?wt% intumescent flame retardant and 2?wt% zinc phytate have a limiting oxygen index 29.2 and achieve the UL-94?V-0 rating. Moreover, the peak heat release rate of the polypropylene composites decreases from 374 to 275?kW/m2. Real-time Fourier-transform infrared spectroscopy showed that the zinc phytate delays the emission of carbon dioxide indicating that zinc phytate slows the degradation of polypropylene which regulates the suitability of intumescent flame-retardant system in polypropylene.  相似文献   

19.
将抗菌丙纶母粒(含质量分数20%无机载银抗菌粒子)与PP进行熔融共混、切片,再通过熔融纺丝制得抗菌丙纶。扫描电镜观察经表面改性处理的无机抗菌粒子在丙纶中分散较好,大小均匀,且与PP基体具有良好的界面相容性;DSC测试表明:抗菌粒子对PP基体有异相成核作用,使PP结晶度和熔融温度略有提高;加入无机抗菌粒子,降低了丙纶的力学性能,添加量宜1%;通过改变纤维的拉伸倍数,提高抗菌丙纶的力学性能,拉伸倍数为8时,其力学性能最好;该抗菌丙纶对革兰氏阴性和阳性菌的杀菌率都大于99.9%,经水洗后仍有较好的抑菌效果,具有一定的长效抗菌性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号