共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
轴承的健康状态与设备安全可靠运行息息相关,在现代制造系统中,轴承剩余使用寿命(Remaining Useful Life,RUL)预测已成为研究热点.文中提出了通过数据增强来提取轴承衰退特征并利用卷积神经网络(Convolutional Neural Network,CNN)进行轴承RUL预测的方法.该方法首先将均方根、峰值和峰度作为时域特征,频谱分区求和(FSPS)特征作为频域特征,经过数据增强将18维时域和频域特征增加到108维,从而得到全面反应轴承退化过程的信息.通过搭建卷积神经网络(CNN),利用CNN处理高维特征的能力实现轴承RUL预测.最后,试验结果证明文中所提方法相对DNN模型、SVM模型具有更高的预测精度. 相似文献
3.
机械装备的剩余寿命预测 总被引:3,自引:0,他引:3
一、引套任何机件均在一定的应力状态、环境介质及温度条件下服役。随着机械装备运转时间的推移,机件表面或内部将会产生诸如磨损、腐蚀、疲劳、蠕变、脆化等损伤。上述损伤累积的过程,也就是机件寿命不断减少的过程,直到该机件完全报废,即寿命终结为止。 相似文献
4.
提出基于主成分分析处理多天气因素的LMBP电力负荷预测模型。采用主成分分析技术对多气象因素进行降维处理,提取多天气因素特征量,既全面表征天气因素对电力负荷的影响,又简化预测模型。将得到的新气象特征量与历史负荷数据共同作为建模对象。采用基于L-M优化算法的BP神经网络(LMBP)进行预测分析,通过最速梯度下降法和牛顿法之间的自适应调整优化网络权值,有效提高网络的收敛速度和泛化能力。通过对美国南部某地区实际电力负荷系统进行预测分析表明该方法可以有效提高预测精度和预测效率。 相似文献
5.
6.
为研究滚珠丝杠的性能退化趋势,准确预测丝杠寿命,提出了基于多变量灰色模型的丝杠寿命预测系统.在滚珠丝杠副的不同位置安装3个加速度传感器,实时监测丝杠性能在不同加工条件下的变化趋势.通过模态分解方法分解选择对丝杠性能退化最敏感的特征参数,利用多变量灰色模型建立丝杠寿命与切削三要素、信号特征值的非线性映射关系,最终构建了基于多变量灰色模型的丝杠寿命预测模型,实现了对丝杠剩余寿命的有效评估.试验结果表明,所建立的丝杠性能退化模型能够有效预测丝杠的剩余寿命. 相似文献
7.
8.
针对轴承从早期故障发生到失效的非线性退化问题,提出一种基于无迹卡尔曼滤波算法(UKF)的轴承剩余寿命预测方法。该方法包括轴承性能评估和剩余寿命预测两个部分。在性能评估部分,首先利用轴承振动信号建立反映其健康状态的指数,基于对正常工作时指数的学习获得用于判断轴承健康状态的异常阈值并截取出轴承从早期故障发生到失效这一性能退化阶段的数据;在剩余寿命预测部分,利用双指数函数拟合分析轴承退化数据,构建出与轴承退化过程相符的非线性状态空间模型,模型参数利用Dempster-Shafer方法进行初始化后采用UKF算法对其进行更新,并预测轴承的剩余寿命。基于轴承全寿命周期试验数据的分析,结果显示所提方法有效地评估了轴承的健康状况,通过对比分析其他剩余寿命预测方法,发现所提方法较好地预测了轴承的剩余寿命。 相似文献
9.
10.
11.
利用航空发动机传感器数据对发动机状态进行监视,采用主成分分析(PCA)方法和线性判别法(LDA)对发动机传感器数据进行二次特征提取,按照最优近邻思想进行分类。将2008年IEEE PHM数据作为实验数据,将基于PCA和LDA的分类结果与基于PCA的分类方法以及深度信念网(DBN)分类方法的结果进行了对比分析,结果表明,基于PCA和LDA方法的识别率综合最优且结构简单,对于工程应用该方法有效可行。 相似文献
12.
针对轴承振动信号随机噪声干扰大、多尺度熵表征轴承退化趋势偏差大的问题,提出了一种基于二元多尺度熵的滚动轴承退化趋势预测方法。首先对滚动轴承振动信号进行局部特征尺度分解,采用多元多尺度熵理论对二阶信号进行计算,提取了二元多尺度熵特征。然后采用互信息法和假近邻法对算法中的嵌入维数和延迟向量等参数进行了优化。最后采用极限学习机预测模型对二元多尺度熵退化趋势曲线进行预测,并对比了不同激活函数的预测性能。结果表明,相对于传统多尺度熵,二元多尺度熵偏差较小;激活函数为sigmoid时极限学习机模型预测精确度较高。 相似文献
13.
14.
首先利用蛙跳算法对最佳影响参数组合进行搜索,搜索结束后选择最优的参数,利用优化参数的变分模态分解对故障信号处理,得到本征模态函数;为了验证蛙跳算法得到的参数是否为最优参数,选择最佳的本征模态函数进行包络分析,将包络谱的特征频率与实际故障频率相比较;以得到的模态函数构成矩阵,进行奇异值分解,得到信号的奇异值,以奇异值作为极限学习机的输入,对故障类型进行分类。利用优化参数的变分模态分解对仿真信号和实测信号进行分析,均能提取特征信息,对故障类型进行识别,表明该方法有一定的实际意义和实用价值。 相似文献
15.
为有效降低滚动轴承故障特征的维数并提高诊断准确率,将主成分分析(PCA)和支持向量机(SVM)方法应用到轴承故障特征的融合分析中,给出了相应的决策流程。应用基于小波包分解的特征提取算法及特征向量的构造方法对不同状态下的振动信号进行分解,得到用于表征轴承运行状态的8维特征集合;应用PCA提取累积贡献率达到95%的特征主成分并输入SVM分类器中进行识别。结果表明,将滚动轴承故障特征从8维降低到5维,仍可有效表征轴承的状态,但大大降低了计算的复杂性;故障诊断的准确率达到97%以上,诊断时间也相对较短;4种轴承状态识别的准确率从高到低依次为正常、外圈剥落、滚动体剥落和内圈剥落,可为确保设备安全运行和快速故障诊断提供理论依据。 相似文献
16.
为有效降低齿轮箱故障特征的维数并提高诊断效率,提出了基于邻域属性重要度与主成分分析法相结合的齿轮箱故障特征约简方法,并利用支持向量机和BP神经网络对诊断的准确率进行对比分析。针对齿轮箱中具有不同程度裂纹的齿轮,选取其时域、频域和基于希尔伯特变换的36个特征;将邻域模型引入到特征属性的约简,构造前向贪心算法,以邻域属性重要度较大的9个特征作为特征集,提取累积贡献率达到95%以上的主成分,分别输入支持向量机和BP神经网络分类器中进行分类识别,并与不经过特征优选的主成分特征融合相对比。结果表明,采用基于邻域属性重要度与主成分分析法相结合的特征约简方法,既可以降低齿轮箱故障特征的维数,又不影响对其运行状态的表征,有助于识别不同裂纹水平的齿轮,与不经过特征优选直接进行融合的方法相比,所提出方法诊断准确率更高,训练时间更短。 相似文献
17.
为了有效提取滚动轴承振动信号的故障特征和提高分类识别精度,提出了一种基于冗余二代小波包变换-局部特征尺度分解(redundant second generation wavelet packet transform-local characteristic scale decomposition,简称RSGWPT-LCD)和极限学习机(extreme learning machine,简称ELM)相结合的故障特征提取和分类识别方法。首先,利用希尔伯特变换对原始振动信号进行处理,得到包络信号;其次,基于双层筛选机制,结合冗余二代小波包变换(redundant second generation wavelet packet transform,简称RSGWPT)和局部特征尺度分解(local characteristic-scale decomposition,简称LCD)方法对包络信号进行分解,筛选出包含主要信息的内禀尺度分量(intrinsic scale components,简称ISCs);然后,对提取的各ISCs分量构建初始特征矩阵并进行奇异值分解(singular value decomposition,简称SVD),将得到的奇异值作为表征各损伤信号的特征向量;最后,以提取的特征向量为输入样本,建立ELM模式分类器对滚动轴承损伤信号进行识别。信号仿真和实测数据表明,该方法可有效提取振动信号故障特征,提高分类识别精度,实现滚动轴承故障诊断。 相似文献
18.
针对单一特征在进行故障诊断时准确率不高的问题,提出了一种基于自组织神经网络(SOM)的滚动轴承状态评估方法。该方法首先从原始振动信号中提取出多特征数据,运用主成分分析(PCA)方法对多特征数据进行预处理,采用SOM进行网络训练,构建多特征数据的融合模型,输出竞争神经元层的权值矢量;然后,计算每一个样本到竞争神经元层权值矢量的最小欧氏距离,输出最终的融合指标;最后,通过比较待检测样本与正常样本的最小欧氏距离的差异来判断轴承的状态。将该方法应用于滚动轴承状态评估,试验结果表明:融合指标比单一指标对早期故障更加敏感、更加稳健;同时,融合指标能够定量地描述轴承状态的劣化过程。 相似文献
19.
针对湿式球磨机在磨矿过程中内部负荷靠专家经验难以准确预测的问题,提出一种基于改进的共生生物搜索(ameliorated symbiotic organisms search,简称ASOS)-极限学习机(extreme learning machine,简称ELM)的磨机负荷软测量方法。首先,利用ELM算法建立磨机负荷软测量模型,运用ASOS算法优化软测量模型的隐含层参数;其次,以筒体振动与振声信号的特征信息构建磨机负荷特征向量,并将其作为软测量模型的输入,将磨机负荷参数作为输出;最后,通过磨矿负荷检测实验和对比分析表明,磨机负荷软测量模型的负荷参数预测准确率较高,泛化能力较强,为磨机磨矿效率的提高及控制优化提供了有益的指导。 相似文献
20.
基于主分量分析的柴油机振动信号特征提取 总被引:2,自引:0,他引:2
针对柴油机振动信号非线性非平稳性的特点,提出一种相空间重构理论、局域波法与主分量分析相结合的信号特征提取模型,该模型首先应用相空间重构理论从已知时间序列中抽取动力系统,然后通过主分量提取以降低空间维数、突出故障信息,最后使用局域波时频分析方法对提取的主分量进行分析。通过对6BB1型柴油机实测信号进行的特征提取与分析表明,该方法能去除柴油机振动信号局域波时频图中的冗余信息,突出故障信息,从而证明了方法的有效性。 相似文献