首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The potentiating activity of SG-86[N-(2-hydroxyethyl)nicotinamide], a denitrated metabolite of nicorandil, on the adenosine-induced vasodepression was compared with that of nicorandil in anesthetized rats. Single bolus i.v. adenosine (3-100 micrograms/kg) produced dose-dependent reductions of blood pressure, accompanied by slight decreases (except for 100 micrograms/kg) in heart rate. The adenosine-induced vasodepression was significantly enhanced during i.v. infusion of either SG-86 (100 micrograms/kg per min) as well as nicorandil (10 micrograms/kg per min). The enhancement of adenosine action by them did not occur in the presence of glibenclamide (20 mg/kg i.v.). Single bolus i.v. injections of SG-86 (0.3-30 mg/kg), except for 30 mg/kg, which caused a glibenclamide-sensitive decrease by about 5-10 mmHg in mean arterial blood pressure, had no effects on blood pressure and heart rate, whereas those of nicorandil (30-300 micrograms/kg) elicited overt reduction of blood pressure, accompanied by decreases in heart rate. The present results revealed that SG-86, like nicorandil, significantly enhanced the vasodepressor response to adenosine, probably in part through KATP channel activation, and that the activity of SG-86 was about 10 times less potent than that of nicorandil.  相似文献   

2.
The aim of this study was to explain the contribution of mitochondria to the accumulation of 99mTc-meso-hexamethyl propyleneamine oxime (HMPAO) in the brain, after examinations were performed. METHODS: We studied subcellular distribution of 99mTc-meso-HMPAO and glutathione (GSH) in normal and diethyl maleate (DEM)-administered mice. RESULTS: In normal brain, major radioactivity was found in the mitochondrial (49.0%) and cytosolic fractions (33.0%), while the GSH content was high in the cytosol (63.2%) and mitochondria (30.6%). The radioactivity in mitochondrial, cytosolic, microsomal and nuclear fractions was decreased in a dose-dependent manner by DEM, a GSH depleting agent, to 32.2% (mitochondrial) and 24.7% (cytosolic) of the control by a dose of 550 mg/kg. The GSH content in mitochondrial and cytosolic fractions also decreased in a dose-dependent manner on DEM treatment to 29.3% (mitochondrial) and 30.0% (cytosolic) of the control by 550 mg/kg of DEM. A good correlation was found between the uptake of 99mTc-meso-HMPAO and GSH content in mitochondrial, cytosolic and nuclear fractions, with a correlation coefficient (r) of 0.814, 0.834 and 0.784, respectively. CONCLUSION: Mitochondria are a major subcellular fraction for the uptake of 99mTc-meso-HMPAO by the brain, and GSH in mitochondria contributes to the accumulation of 99mTc-meso-HMPAO.  相似文献   

3.
The disposition of L-694,458, a potent monocyclic beta-lactam inhibitor of human leukocyte elastase, was studied in male Sprague-Dawley rats and rhesus monkeys. After iv dosing, L-694,458 exhibited similar pharmacokinetic parameters in rats and rhesus monkeys. The mean values for its plasma clearance, terminal half-life, and volume of distribution at steady state were 27 ml/min/kg, 1.8 hr, and 4.0 liters/kg in rats and 34 ml/min/kg, 2.3 hr, and 5 liters/kg in rhesus monkeys. The bioavailability of a 10 mg/kg oral dose was higher in rats (65%) than in rhesus monkeys (39%). In both species, concentrations of L-694,458 in plasma increased more than proportionally when the oral dose was increased from 10 mg/kg to 40 mg/kg. In monkeys a protracted plasma concentration-time profile was observed at 40 mg/kg, characterized by a delayed T(max) (8-24 hr) and a long terminal half-life (6 hr). [3H]L-694,458 was well absorbed after oral dosing to rats at 10 mg/kg, as indicated by the high recovery of radioactivity in bile (83%) and urine (6%) of bile duct-cannulated rats. Only approximately 5% or less of the radioactivity in bile, urine, and feces was a result of intact L-694,458, indicating that the compound was being eliminated by metabolism, followed by excretion of the metabolites in feces, via bile. Demethylenation of the methylenedioxyphenyl group resulting in the catechol was the primary metabolic pathway in human and rhesus monkey liver microsomes. In rat liver microsomes, the major metabolite was the N-oxide of the methyl-substituted piperazine nitrogen. In rats dosed iv and orally with [3H]L-694,458, concentrations of radioactivity were highest in the lung (the primary target tissue), adrenals, and liver. L-694,458 was unstable in rat blood and plasma, degrading via a pathway believed to be catalyzed by B-esterases and to involve cleavage of the beta-lactam ring and loss of the methylpiperazine phenoxy group. In vitro studies indicated that in human liver, L-694,458 was metabolized by CYP3A and 2C isozymes, and in both monkey and human liver microsomes the compound acted as an inhibitor of testosterone 6beta-hydroxylation.  相似文献   

4.
(2'R,5'S-)-cis-5-Fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine (524W91) is a nucleoside analog with potent anti-human immunodeficiency virus and anti-human hepatitis B virus activities in vitro. The pharmacokinetics and bioavailability of 524W91 after oral dosing were studied in mice dosed with 10, 100, and 600 mg of 524W91 per kg of body weight by the oral and intravenous routes. Cynomolgus monkeys were dosed with 10 and 80 mg of 524W91 per kg. In both species, the clearance of 524W91 was rapid, via the kidney, and was independent of dose. In monkeys, the total body clearance of 10 mg of 524W91 per kg was 0.7 +/- 0.1 liter/h/kg, and the volume of distribution at steady state was 0.8 +/- 0.02 liter/kg. The terminal elimination half-life was 1.0 +/- 0.2 h. The absolute bioavailability after oral dosing was 63% +/- 4% at 10 mg/kg. Concentrations of 524W91 in the cerebrospinal fluid were 4% +/- 0.7% of the corresponding levels in plasma. In mice, the total clearance of 10 mg of 524W91 per kg was 2.3 liters/kg/h, and the volume of distribution at steady state was 0.9 liter/kg. Absolute bioavailability in mice after oral dosing was 96% at a dose of 10 mg/kg. The metabolism of orally administered [6-3H]524W91 was studied in cynomolgus monkeys at a dose of 80 mg/kg and in mice at a dose of 120 mg/kg. Monkeys excreted 41% +/- 6% of the radioactive dose in the 0- to 72-h urine, 33% +/- 10% in the feces, and 10% +/- 7% in the cage wash. Unchanged 524W91 was 64% of the total radiolabeled drug recovered in the urine. The glucuronide was a minor urinary metabolite. 5-Fluorouracil was not detected (less than 0.02% of the dose). Mice dosed orally with 120 mg of [6-3H]524W91 per kg excreted 67% +/- 7% of the radiolable in the )- to 48-h urine. Small amounts of the 3' -sulfoxide and glucuronide metabolites were observed in the urine, but 5-fluorouracil was not detected. Good bioavailability after oral dosing and resistance to metabolism recommend 524W91 for further preclinical evaluation.  相似文献   

5.
It is recognized that iodine-123-labelled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (123I-BMIPP) slowly washes out of the myocardium. The mechanism for the washout was investigated in normal rat hearts by analyses of the subcellular distribution and lipid classes based on the BMIPP metabolism. Rat hearts were excised at 1-120 min after intravenous injection of 123I-BMIPP. After counting the radioactivity, the hearts were digested with Nagarse and homogenized, and then fractionated into the cytosolic, mitochondrial, microsomal and crude nuclear fractions by centrifugations. The radioactivity of each fraction was counted, and the lipid classes were analysed by radio-thin-layer chromatographic and high-performance liquid chromatographic methods. The heart uptake of 123I-BMIPP was maximal at 5 min (6.81%+/-0.36% ID/g), and 41% of the radioactivity disappeared within 120 min. The myocardial radioactivity was immediately distributed into the cytosolic, mitochondrial, microsomal and crude nuclear fractions. The distribution (%) of each fraction was almost identical from 5 min through 120 min. The cytosolic fraction was always the major site of radioactivity deposition (60%), and the time-activity curve of the cytosolic fraction paralleled that of the whole heart throughout the 120-min study period. In the cytosolic fraction, most of the radioactivity was incorporated into the triglyceride class, and the rest was present in the free fatty acid, phospholipid (phosphatidylcholine) and diglyceride classes. In the mitochondrial fraction, the radioactivity was mostly incorporated into the phospholipid class (phosphatidylethanolamine), followed by free fatty acids. The final metabolite of 123I-BMIPP, 123I-p-iodophenylacetic acid (123I-PIPA), initially appeared in the mitochondrial fraction as early as 1 min, and subsequently in the cytosolic fraction at 5 min. Another intermediary metabolite, 123I-p-iodophenyldodecanoic acid (123I-PIPC12), was found only in the mitochondrial fraction after 5 min. In conclusion, the slow washout kinetics of 123I-BMIPP from the myocardium mainly reflects the turnover rate of the triglyceride pool in the cytosol. The BMIPP metabolism, i.e. initial alpha-oxidation followed by subsequent cycles of beta-oxidation, was confirmed in vivo. The participation of the mitochondria in the metabolism was also proven.  相似文献   

6.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, some of which may be neurotoxic. In vitro studies from this laboratory indicated that noncoplanar PCBs perturbed intracellular signal transduction mechanisms including Ca2+ homeostasis, receptor-mediated inositol phosphate production, and translocation of protein kinase C (PKC). In the present study, we examined the effects of PCBs in vivo by dosing adult male Long-Evans rats orally with Aroclor 1254 (0, 10, or 30 mg/kg/day; 5 days/week for 4 weeks) in corn oil. At 24 h after the last dose, rats were tested for motor activity in a photocell device for 30 min. Immediately, the rats were euthanized, blood was collected for thyroid hormone analysis, and brains were removed, dissected into regions (cerebellum, frontal cortex, and striatum), and subcellular fractions were obtained for neurochemical analysis. Following Aroclor 1254 treatment, body weight gain in the high-dose group was significantly lower than the control and low-dose groups. Horizontal motor activity was significantly lower in rats dosed with 30 mg/kg Aroclor 1254. Ca2+ buffering by microsomes was significantly lower in all three brain regions from the 30 mg/kg group. In the same dose group, mitochondrial Ca2+ buffering was affected in cerebellum but not in cortex or striatum. Similarly, total cerebellar PKC activity was decreased significantly while membrane-bound PKC activity was significantly elevated at 10 and 30 mg/kg. PKC activity was not altered either in cortex or the striatum. Neurotransmitter levels in striatum or cortex were slightly altered in PCB-exposed rats compared to controls. Furthermore, repeated oral administration of Aroclor 1254 to rats did not significantly alter forebrain tyrosine hydroxylase immunoreactivity or enzymatic activity. Circulating T4 (total and free) concentrations were severely depressed at both doses in Aroclor 1254-exposed rats compared to control rats, suggesting a severe hypothyroid state. These results indicate that (1) in vivo exposure to a PCB mixture can produce changes in second messenger systems that are similar to those observed after in vitro exposure of neuronal cell cultures; (2) second messenger systems seem to be more sensitive than alterations in neurotransmitter levels or tyrosine hydroxylase involved in dopamine synthesis during repeated exposure to PCBs; and (3) the observed motor activity changes were independent of changes in striatal dopamine levels.  相似文献   

7.
We have previously reported that in rat brain membranes, [3H]rilmenidine, in addition to labelling alpha2-adrenoceptors and the I2B-subtype of imidazoline receptor binding site (I2B-RBS), may label an additional I-RBS population, distinct from previously classified I1-RBS and I2-RBS. In this study, using crude or fractionated rat brain membranes we examined the possible association of [3H]rilmenidine-labelled I-RBS with the A- and B-isoforms of monoamine oxidase (MAO) by studying the inhibition of [3H]rilmenidine binding by a number of MAO inhibitors; and comparing the maximal binding density (Bmax) and subcellular distribution of [3H]rilmenidine binding sites with that of MAO-A and MAO-B catalytic sites labelled by [3H]RO41-1049 and [3H]RO19-6327 and 12-RBS labelled by [3H]2-BFI. Inhibition of [3H]rilmenidine binding by all MAO inhibitors tested produced very shallow curves (slope 0.29-0.56). Clorgyline and moclobemide (selective MAO-A inhibitors) displayed moderate affinities (60-140 nM), while pargyline (non-selective MAO-inhibitor), RO41-1049 (selective MAO-A inhibitor) and RO19-6327 (selective MAO-B inhibitor) exhibited very low affinities (> 2 microM) for 50-75% of [3H]rilmenidine-labelled I-RBS in crude brain membranes and even lower affinity for the remaining binding. Under identical buffer conditions, the Bmax of [3H]rilmenidine-labelled I-RBS (1.45+/-0.14 pmol/mg protein) was considerably lower than those of MAO-A (13.10+/-0.15 pmol/mg) and MAO-B (10.35+/-0.50 pmol/mg) sites. These results suggest that [3H]rilmenidine does not interact directly with the active catalytic site of either MAO enzyme and could at best only associate with a subpopulation of MAO molecules. Binding studies on five fractions of rat cortex homogenates-nuclear (N), heavy (M) and light (L) mitochondrial, microsomal non-mitochondrial (P), and soluble cytosolic (S) fractions-revealed that 45% of total [3H]rilmenidine binding was present in the P fraction cf. 20 and 23% in the M and L fractions, in contrast to [3H]RO19-6327 and [3H]2-BFI which bound 11-13% in the P fraction and 36-38% and 35-44% in the M and L fractions, respectively. Binding of all ligands in the N fraction was 6-15% of total. These studies reveal that [3H]rilmenidine-labelled I-RBS, unlike the I2-RBS, are not predominantly associated with mitochondrial fractions containing the MAO enzymes (and cytochrome oxidase activity), but appear to be distributed in both the mitochondrial and plasma membrane fractions in rat cerebral cortex.  相似文献   

8.
The localization of the low-affinity adenosine binding protein adenotin-1 with respect to distribution in rat organs and subcellular compartments was investigated. Adenotin-1 was characterized by 5'-N-ethylcarboxamido[2,8-3H]adenosine ([3H]NECA) binding and Western blotting. Cytosolic as well as membrane fractions of all tissues contained adenotin-1. Highest levels of membrane-bound adenotin-1 were found in the liver (liver > kidney approximately spleen approximately lung > forebrain approximately cerebellum > fat heart - striated muscle), whereas highest levels of cytosolic adenotin-1 were detected in spleen, liver, lung and fat. Subcellular fractions from rat liver were prepared by differential and density gradient centrifugation. Like the homologous proteins endoplasmin or gp96, adenotin-1 is enriched in the endoplasmic reticulum. Cytosolic and membrane-bound adenotin-1 species are pharmacologically distinct, because in the liver particulate fraction adenotin-1 showed a more rapid binding kinetics, a twofold lower affinity for [3H]NECA (KD 227 nM vs. 105 nM) and a sevenfold higher affinity for 2-chloroadenosine than the cytosolic protein (Ki 1.48 microM vs. 9.25 microM). In rat liver cytosol, two different binding sites were found, which differed in [3H]NECA binding kinetics and displayed a hundredfold difference in their affinity for 2-chloro-5'-N-methylcarboxamidoadenosine (Ki 45.8 nM vs. 4.76 microM). The presence of adenotin-1 in subcellular fractions, as determined by radioligand binding, was confirmed by Western blotting. Adenotin-1 was detected as a 98-kDa band in all rat liver subcellular fractions, which agrees with the molecular mass determined for the purified protein. In the cytosol, a 65-kDa hand was labeled more intensely than the 98-kDa band. This additional band probably represents the pharmacologically distinct species of adenotin-1 found in the cytosol.  相似文献   

9.
1. Absorption, distribution, excretion and metabolism of (-)N-[alpha-phenyl-beta-(p-tolyl)ethyl][14C]linoleamide (14C-PTLA) were studied in rats and dogs. Faecal excretion of PTLA was studied in dogs and men by g.l.c. 2. 14C-PTLA (10 mg/kg) given orally to rats resulted in urinary and faecal excretion of radioactivity of 2 and 93%, respectively, by male rats and 8 and 87% by female rats in 48 h. Faecal excretion of PTLA in men was similar to that in rats. 3. Distribution of radioactivity in rats and dogs after oral administration of 14C-PTLA showed that a major part of the dose was not absorbed. 4. N-[alpha-phenyl-beta-(p-tolyl)ethyl]glutaric acid monoamide were detected in the urine of rats dosed orally with 14C-PTLA.  相似文献   

10.
The disposition of ethyl 4-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2-(1,2,4- triazol-1-ylmethyl) quinoline-3-carboxylate (CAS 158146-85-1, TAK-603) after single oral dosing of 14C-labeled TAK-603 ([14C]TAK-603) at 10 mg/kg to rats and dogs was studied. In rats, the concentration of unchanged drug in plasma reached a peak (Cmax, 0.31 microgram/ml) 2 h (Tmax) after dosing of TAK-603 and declined biphasically with apparent half-lives (t 1/2 alpha, t 1/2 beta) of 1.5 and 3.6 h. In dogs, Tmax, Cmax, T 1/2 alpha, and t 1/2 beta were 1.7 h, 0.36 microgram/ml, 1.2, and 10.8 h, respectively. [14C]TAK-603 dosed orally was absorbed quantitatively in rats, while the extent of absorption in dogs was 54%. The bioavailability of TAK-603 was 53% and 42% in rats and dogs, respectively. In rats, 14C was distributed widely in various tissues, with relatively high concentrations in the liver, adrenal gland, and gut. The elimination of 14C from the thyroid was slower than that from other tissues. Unchanged TAK-603 and its pharmacologically active metabolite, M-I, which has the same potency as TAK-603, were distributed in articular soft tissues and synovial fluids, as target tissues, in rats and dogs, respectively. After oral administration of [14C]TAK-603, most of the 14C dosed was excreted within 48 h in rats and within 96 h in dogs. In both animals, a greater amount of the 14C dosed was excreted in feces than in urine. In biliary duct cannulated rats given [14C]TAK-603 intraduodenally, 69% of the dose was excreted in bile, and biliary 14C in part underwent enterohepatic circulation.  相似文献   

11.
After intraperitoneal administration into rats at a dose of 100 mg per kg of body weight nitrazepame (mogadone, eunoktine) was enzymatically reduced with the subsequent acetylation. Derivatives of nitrazepame were found in cellular fragments and nuclei, in mitochondrial, microsomal and soluble fractions of liver, lungs, heart and brain tissues. Reduction of the substrate was shown to occur in soluble and microsomal fractions of liver tissue and acetylation--in mitochondria of lungs and liver tissue. Nitrazepame metabolites were quite uniformly distributed over cell organelles of heart and brain tissues; this suggests that they originate in the organs from other tissues, where the processes of reduction and acetylation take place. Nitrazepame and its derivatives penetrated into brain very effectively; this phenomenon is considered as an essential one for their pharmocological activity.  相似文献   

12.
The roles of the known tumor necrosis factor (TNF) receptors (TNFR-I and TNFR-II) and their associated signaling pathways in mediating the diverse actions of TNF remain incompletely defined. We have found that a proportion of exogenous TNF is delivered to mitochondria as well as to lysosomes. Using confocal and immunoelectron microscopy and Western blotting of subcellular fractions, we have identified a 60-kd protein in the inner mitochondrial membrane that is recognized by a monoclonal antibody to TNFR-II. In isolated mitochondria, this protein binds [125I]-TNF. This provides evidence of a mitochondrial binding protein for an extracellular ligand and demonstrates the presence of a pathway capable of delivering TNF from the cell surface to mitochondria. These findings suggest that TNF effects on cells may be due in part to a direct effect on mitochondria.  相似文献   

13.
The subcellular distribution of folate coenzymes in the brain is unknown. Brain folate concentrations are low and hence require a sensitive assay to determine the subcellular distribution. Rat brain was fractionated by differential centrifugation into cytoplasmic, mitochondrial and crude synaptosomal fractions. The compositions of the folate pools in these subcellular fractions were determined by differential conversion of one-carbon forms enzymatically to 5,10-methylenetetrahydrofolate (5,10CH2H4PteGlu(n)) followed by reaction of the 5,10CH2H4PteGlu(n) with thymidylate synthetase and [3H]fluorodeoxyuridylate to form ternary complexes, which were then separated as a function of polyglutamate chain length by isoelectric focusing, visualized by fluorography and quantified by densitometry. The distribution of the pteridine derivatives in brain was very similar to the distribution of these derivatives in liver. Cytoplasm contained primarily 5-methyltetrahydropteroylpolyglutamates with smaller amounts of unsubstituted tetrahydropteroylpolyglutamates, whereas mitochondria contained approximately equal concentrations of unsubstituted and formyl-substituted tetrahydropteroylpolyglutamates. The subcellular distribution of polyglutamate derivatives in brain, however, was different from that in liver. In the brain, the mitochondrial folates exhibited longer polyglutamate chains than did the cytoplasmic folates, a pattern opposite to that in the liver. Whereas the brain cytoplasmic pteroylpolyglutamates were primarily penta and hexa glutamates, the brain mitochondrial pteroylpolyglutamates were primarily hexa and hepta glutamates. The brain also contained small but measurable levels of oxidized folates, which were seen in crude synaptosomal fractions but not in cytoplasmic or mitochondrial fractions.  相似文献   

14.
PHIPA 3-10 [13-(4'-iodophenyl)-3-(p-phenylene)tridecanoic acid] is a p-phenylene-bridged, radioiodinated omega-phenyl fatty acid that has recently been developed to study coronary artery disease or cardiomyopathies. Here, we demonstrate that PHIPA 3-10 exhibits the characteristics of a long-chain fatty acid, including its ability to be efficiently taken up by myocytes and to function as a substrate for beta-oxidation before it is trapped. METHODS: Myocardial metabolism of carrier-added and carrier-free 131I-PHIPA 3-10 preparations were investigated in rats in vivo and in isolated Langendorff rat hearts. Heart extracts were analyzed by high-performance liquid chromatography, negative-ion electrospray mass spectrometry and investigation of intracellular distribution using density-gradient centrifugation. RESULTS: A single, rapidly formed metabolite was found in the heart extract and also, surprisingly, in the hydrolyzed lipids. The total amount of metabolite increased from 43% to 51% between 15 and 60 min postinjection. By high-performance liquid chromatography comparison with synthetic potential catabolites, the metabolite was assigned the name PHIPA 1-10 [11-(4'-iodophenyl)-1-(p-phenylene)undecanoic acid] and was the product of one beta-oxidation cycle. Additional proof was obtained from the mass spectrometric analysis of the metabolite formed in vivo. The formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl transferase I inhibitor, indicating beta-oxidation of 131I-PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of 131I-PHIPA 3-10 was obtained by density-gradient centrifugation of homogenized rat heart tissue. The position of the labeled free PHIPA 3-10 and free metabolite peaked within the fraction containing mainly mitochondria. CONCLUSION: In spite of its bulky structure, 131I-PHIPA 3-10 is extracted by the myocardium in a manner similar to the extraction of the unmodified fatty acid analog, IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group, which prevents more than one beta-oxidation cycle. Intracellular free PHIPA 3-10 and free PHIPA 1-10 are present in the mitochondria, whereas most of the esterified metabolite was found in the cytosolic lipid pool. Hence, the rapid appearance of PHIPA 1-10 in the lipid pool must be accounted for by mitochondrial leakage or by an unknown in-out transport system.  相似文献   

15.
Coronary vasodilator and hemodynamic profiles of JTV-506, a newly synthesized 2,2-bis-methoxymethyl benzopyran-derivative potassium channel opener, were evaluated in conscious dogs. JTV-506 (2.5-10 microg/kg, i.v.) elicited dose-dependent increases in coronary blood flow (CBF) and heart rate (HR) but only slight changes in mean blood pressure (MBP). Other vasodilators such as levcromakalim, nicorandil, diltiazem, and nitroglycerin, when administered intravenously, elicited increases in CBF and HR and a decrease in MBP. When dosed orally JTV-506 (0.01-0.1 mg/kg), levcromakalim (0.01-0.1 mg/kg), nicorandil (1-10 mg/kg), and nifedipine (3-30 mg/kg) also elicited increases in CBF and HR and a decrease in MBP. JTV-506 caused a marked increase in CBF with slight changes in HR and MBP. In contrast to JTV-506, however, the changes caused by levcromakalim, nicorandil, and nifedipine were accompanied by a marked increase in HR and a marked decrease in MBP. These results suggest that the action of JTV-506 on hemodynamics is different from that of other vasodilators, including reference potassium channel openers, and that the profile of cardiovascular action of JTV-506 may be useful in the treatment of angina pectoris.  相似文献   

16.
OBJECTIVE: The objective was to evaluate the effect of left ventricular function on cyanotic myocardium after ischemia-reperfusion and to determine the effect of cyanosis on the myocardial antioxidant system. METHODS: Cyanotic hearts (cyanotic group) were obtained from rats housed in a hypoxic chamber (10% oxygen) for 2 weeks and control hearts (control group) from rats maintained in ambient air. Isolated, crystalloid perfused working hearts were subjected to 15 minutes of global normothermic ischemia and 20 minutes of reperfusion, and functional recovery was evaluated in the two groups. Myocardial superoxide dismutase, glutathione peroxidase, glutathione reductase activity, and reduced glutathione content were measured separately in the cytoplasm and mitochondria at the end of the preischemic, ischemic, and reperfusion periods. RESULTS: Mean cardiac output/left ventricular weight was not significantly different between the two groups. Percent recovery of cardiac output was significantly lower in the cyanotic group than in the control group (56.1% +/- 5.7% vs 73.0% +/- 3.1%, p = 0.001). Mitochondrial superoxide dismutase, mitochondrial and cytosolic glutathione reductase activity, and cytosolic reduced glutathione were significantly lower in the cyanotic group than in the control group at end-ischemia (superoxide dismutase, 3.7 +/- 1.3 vs 5.9 +/- 1.5 units/mg protein, p = 0.012; mitochondrial glutathione reductase, 43.7 +/- 14.0 vs 71.0 +/- 30.3 munits/mg protein, p = 0.039; cytosolic glutathione reductase, 13.7 +/- 2.0 vs 23.2 +/- 4.2 munits/mg protein, p < 0.001; and reduced glutathione, 0.69 +/- 0.10 vs 0.91 +/- 0.24 microgram/mg protein, p = 0.037). CONCLUSIONS: Cyanosis impairs postischemic functional recovery and depresses myocardial antioxidant reserve during ischemia. Reduced antioxidant reserve at end-ischemia may result in impaired postischemic functional recovery of cyanotic myocardium.  相似文献   

17.
PURPOSE: To study the relationship between angiotensin II (AII) receptor occupancy ex vivo in tissues plasma concentration and hypotensive effect of a novel AII receptor antagonist, TH-142177 and losartan in rats. METHODS: At 2, 8 and 24 hr after oral administration of TH-142177 and losartan in rats, AII receptors in myocardium, adrenal cortex and cerebral cortex were determined by radioligand binding assay using [125I]Sar1,Ile8-AII. Plasma concentrations of both drugs and metabolite in rats were also measured using validated HPLC assays. Further, systolic blood pressure (SBP) in conscious renal hypertensive rats treated orally with TH-142177 and losartan were measured by using a tail cuff plethysmographic method. RESULTS: Oral administration of TH-142177 (1.8 and 5.5 micromol/kg) and losartan (6.5 and 21.7 micromol/kg) in rats brought about dose-dependent decreases in [125I]Sar1,Ile8-AII binding sites (Bmax) in myocardium and adrenal cortex. The extent of receptor occupancy by both drugs in adrenal cortex was maximal at 2 hr later but that in myocardium at 8 hr later. Further, the receptor occupancy was more sustained in myocardium than adrenal cortex. The ex vivo binding affinity of TH-142177 for AII receptors in these tissues was roughly three times higher than that of losartan. Also, cerebral cortical [125I]Sar1,Ile8-AII binding was significantly reduced by oral administration of losartan but not by TH-142177. The time course of AII receptor occupancy by both drugs in adrenal cortex appeared to be in parallel with that of their plasma concentrations, while the time course in myocardium correlated with that of their hypotensive effects rather than plasma concentrations. CONCLUSIONS: TH-142177 produced a relatively selective and sustained occupancy ex vivo of AII receptors in myocardium and adrenal cortex of rats with approximately three times greater potency than losartan. Its time course of myocardial receptor occupancy was in parallel with that of hypotensive effect rather than plasma concentration.  相似文献   

18.
The modulation of platelet activating factor (PAF) formation in duodenal tissue by nitric oxide (NO) released in response to castor oil was studied in rats pretreated with NG-nitro-L-arginine methyl ester (L-NAME, 6.25-25 mg/kg, i.p.), an inhibitor of NO synthase, NG-nitro-D-arginine methyl ester (D-NAME, 25 mg/kg, i.p.), the inactive enantiomer of L-NAME or isosorbide-5-mononitrate (IMN, 30-90 mg/kg, p.o.), a NO donating compound. Castor oil (2 ml/rat orally) increased PAF production in the rat duodenum 3 h after challenge. L-NAME, but not D-NAME, enhanced the amount of PAF formed by duodenal tissue, while IMN (30-90 mg/kg) counteracted the effects of L-NAME (12.5 mg/kg) and also reduced PAF release in the tissue of rats treated with castor oil. L-NAME 12.5 mg/kg, but not D-NAME, enhanced both macroscopic damage and acid phosphatase release induced by castor oil. These effects were reduced by a PAF antagonist BN 52021 (3-t-Butyl-hexahydro-4, 7b, 11-trihydroxy-8-methyl-9H-1, 7a-epoxymethano-1H, 6aH-cyclopenta [c] furo [2, 3b] furo [3'2':3,4] cyclopenta [1.2-d]furan-5,9,12(4H)trione) 10 and 20 mg/kg i.p. Such findings suggest that endogenous nitric oxide could reduce PAF biosynthesis in castor oil-treated rats.  相似文献   

19.
To investigate the effect of SG-210, a potent inhibitor selective to aldose reductase (ARI), on the impaired polyol pathway, we examined biochemically and histologically the potencies of this compound in streptozotocin-induced diabetic or galactosemic rats. The study with diabetic rats showed that SG-210 (1-10 mg x kg(-1)) dose-dependently inhibited sorbitol accumulations in erythrocytes, sciatic nerves, lens, and retina with ED50 values of 1.4, 1.3, 3.5, and 4.6 mg x kg(-1), respectively. Zenarestat, currently under clinical trials both in Japan and the United States, was about two or over five times less potent than SG-210 in suppressing sorbitol contents of erythrocytes or other tissues, respectively. Epalrestat, commercially available, was much less potent in reducing the contents with ED50 values of more than 30 mg x kg(-1) in all of the cells and the tissues examined. An extensive study using galactosemic rats indicated that SG-210 (3-30 mg x kg(-1)) inhibited galactitol accumulations in lens and retina as well as in erythrocytes, preventing the progression of histological abnormalities in lens accompanied by the reduction in galactitol contents. Epalrestat (3-30 mg x kg(-1)) failed to show any significant effects. Pharmacokinetic studies suggested that SG-210 has a high bioavailability and possesses a long half-life in rats (ca. 10 h). Taken together with its excellent pharmacokinetic profiles, the potent suppressive effects of SG-210 observed in this study may be available as a new treatment of diabetic complications.  相似文献   

20.
Acute exposure to the organophosphate pesticide chlorpyrifos (CPF) on gestation day 12 (GD12, 200 mg/kg/ml, SC) causes extensive neurochemical changes in maternal brain but lesser changes in fetal brain. In the present study, we examined the relative neurotoxicity of repeated, lower-level CPF exposures during gestation in rats. Pregnant Sprague-Dawley rats were exposed to CPF (6.25, 12.5, or 25 mg/kg per day, SC) from GD12-19 and sampled at either GD16, GD20, or postnatal day 3 (PND3) for measurement of various maternal and developmental neurochemical markers. In contrast to the high acute dose exposure, no maternal toxicity was noted with repeated lower-level dosing. Extensive acetylcholinesterase (AChE) inhibition (83-90%) was noted in maternal brain at all three time points following repeated exposures (25 mg/kg). Higher AChE inhibition (58%) was noted in fetal brain at GD20 compared to 19-25% on PND3 in treated pups cross-fostered to control dams and in control pups cross-fostered to treated dams following repeated exposures (25 mg/kg per day). Whereas similar reductions in brain muscarinic receptor binding were noted at GD20 and PND3 in dams and developing brain between acute and repeated dosing regimens, greater changes in [3H]CD and [3H]cytisine binding were evident following repeated exposures. Righting reflex and cliff avoidance tests were markedly altered following repeated exposures. The results suggest that lower-level repeated exposures to CPF cause extensive neurochemical and neurobehavioral changes in developing rats in the absence of maternal toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号